神经网络已越来越多地用于模型预测控制器(MPC)来控制非线性动态系统。但是,MPC仍然提出一个问题,即可实现的更新率不足以应对模型不确定性和外部干扰。在本文中,我们提出了一种新颖的控制方案,该方案可以使用MPC的神经网络动力学设计最佳的跟踪控制器,从而使任何现有基于模型的Feedforward Controller的插件扩展程序都可以应用于插件。我们还描述了我们的方法如何处理包含历史信息的神经网络,该信息不遵循一般的动态形式。该方法通过其在外部干扰的经典控制基准中的性能进行评估。我们还扩展了控制框架,以应用于具有未知摩擦的积极自主驾驶任务。在所有实验中,我们的方法的表现都优于比较的方法。我们的控制器还显示出低控制的水平,表明我们的反馈控制器不会干扰MPC的最佳命令。
translated by 谷歌翻译
这里,我们提出了一种新方法,在没有任何额外的平滑算法的模型预测路径积分控制(MPPI)任务中产生平滑控制序列。我们的方法有效地减轻了抽样中的喋喋不休,而MPPI的信息定位仍然是相同的。我们展示了具有不同算法的定量评估的挑战性自主驾驶任务中的提出方法。还提出了一种用于估算不同道路摩擦条件下的系统动态的神经网络车辆模型。我们的视频可以找到:\ url {https://youtu.be/o3nmi0ujfqg}。
translated by 谷歌翻译
已经使用基于物理学的模型对非全面车辆运动进行了广泛的研究。使用这些模型时,使用线性轮胎模型来解释车轮/接地相互作用时的通用方法,因此可能无法完全捕获各种环境下的非线性和复杂动力学。另一方面,神经网络模型已在该域中广泛使用,证明了功能强大的近似功能。但是,这些黑盒学习策略完全放弃了现有的知名物理知识。在本文中,我们无缝将深度学习与完全不同的物理模型相结合,以赋予神经网络具有可用的先验知识。所提出的模型比大边距的香草神经网络模型显示出更好的概括性能。我们还表明,我们的模型的潜在特征可以准确地表示侧向轮胎力,而无需进行任何其他训练。最后,我们使用从潜在特征得出的本体感受信息开发了一种风险感知的模型预测控制器。我们在未知摩擦下的两个自动驾驶任务中验证了我们的想法,表现优于基线控制框架。
translated by 谷歌翻译
本文提出了一种校准控制参数的方法。这种控制参数的示例是PID控制器的增益,优化控制的成本函数的权重,过滤器系数,滑动模式控制器的滑动表面,或神经网络的权重。因此,所提出的方法可以应用于各种控制器。该方法使用闭环系统操作数据来估计控制参数而不是系统状态的卡尔曼滤波器。控制参数校准由训练目标驱动,其包括对动态系统性能的规范。校准方法在线和强大地调整参数,是计算效率,具有低数据存储要求,并且易于实现对许多实时应用的吸引力。仿真结果表明,该方法能够快速学习控制参数(闭环成本的平均衰减因子大约24%),能够调整参数来补偿干扰(跟踪精度的提高约29%),并且是坚固的噪音。此外,具有高保真车辆模拟器Carim的仿真研究表明,该方法可以在线校准复杂动态系统的控制器,这表明其对现实世界的适用性。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
机器人系统的控制设计很复杂,通常需要解决优化才能准确遵循轨迹。在线优化方法(例如模型预测性控制(MPC))已被证明可以实现出色的跟踪性能,但需要高计算能力。相反,基于学习的离线优化方法,例如加固学习(RL),可以在机器人上快速有效地执行,但几乎不匹配MPC在轨迹跟踪任务中的准确性。在具有有限计算的系统(例如航空车)中,必须在执行时间有效的精确控制器。我们提出了一种分析策略梯度(APG)方法来解决此问题。 APG通过在跟踪误差上以梯度下降的速度训练控制器来利用可区分的模拟器的可用性。我们解决了通过课程学习和实验经常在广泛使用的控制基准,Cartpole和两个常见的空中机器人,一个四极管和固定翼无人机上进行的训练不稳定性。在跟踪误差方面,我们提出的方法优于基于模型和无模型的RL方法。同时,它达到与MPC相似的性能,同时需要少于数量级的计算时间。我们的工作为APG作为机器人技术的有前途的控制方法提供了见解。为了促进对APG的探索,我们开放代码并在https://github.com/lis-epfl/apg_traightory_tracking上提供。
translated by 谷歌翻译
我们为电缆驱动的平行机器人(CDPR)控制器提供了一个基于时变线性二次高斯(TV-LQG)控制器的本地最佳跟踪控制器。与许多使用固定反馈收益的方法相反,我们的时变控制器根据工作区和未来轨迹的位置计算最佳收益。同时,我们严重依赖离线计算来减轻在线实施和可行性检查的负担。遵循概率图形模型的最佳控制模型日益普及,我们使用因子图作为工具来制定控制器的效率,直觉和模块化。因子图的拓扑编码方程的相关结构属性,以促进使用稀疏线性代数求解器的洞察力和有效计算的方式。我们首先使用因子图优化来计算标称轨迹,然后将图形线性化并应用变量消除以计算本地最佳的,时间变化的线性反馈收益。接下来,我们利用因子图公式来计算本地最佳,时变的卡尔曼滤波器的收益,并最终结合了本地最佳的线性控制和估计定律,以形成TV-LQG控制器。我们将TV-LQG控制器的跟踪精度与2.9m x 2.23m的4台式平面机器人上的最先进的双空间前馈控制器进行比较,并演示了0.8 {\ deg}的改进的跟踪精度。和11.6mm的旋转和翻译中均方根误差。
translated by 谷歌翻译
为设计控制器选择适当的参数集对于最终性能至关重要,但通常需要一个乏味而仔细的调整过程,这意味着强烈需要自动调整方法。但是,在现有方法中,无衍生物的可扩展性或效率低下,而基于梯度的方法可能由于可能是非差异的控制器结构而无法使用。为了解决问题,我们使用新颖的无衍生化强化学习(RL)框架来解决控制器调整问题,该框架在经验收集过程中在参数空间中执行时间段的扰动,并将无衍生策略更新集成到高级参与者 - 批判性RL中实现高多功能性和效率的体系结构。为了证明该框架的功效,我们在自动驾驶的两个具体示例上进行数值实验,即使用PID控制器和MPC控制器进行轨迹跟踪的自适应巡航控制。实验结果表明,所提出的方法的表现优于流行的基线,并突出了其强大的控制器调整潜力。
translated by 谷歌翻译
事件触发的模型预测控制(EMPC)是一种流行的最佳控制方法,旨在减轻MPC的计算和/或通信负担。但是,通常需要先验了解闭环系统行为以及设计事件触发策略的通信特征。本文试图通过提出有效的EMPC框架来解决这一挑战,并在随后的自动驾驶汽车路径上成功实施了该框架。首先,使用无模型的加固学习(RL)代理用于学习最佳的事件触发策略,而无需在此框架中具有完整的动态系统和通信知识。此外,还采用了包括优先经验重播(PER)缓冲区和长期术语记忆(LSTM)的技术来促进探索和提高训练效率。在本文中,我们使用提出的三种深度RL算法的拟议框架,即双Q学习(DDQN),近端策略优化(PPO)和软参与者 - 批评(SAC),以解决此问题。实验结果表明,所有三个基于RL的EMPC(DEEP-RL-EMPC)都比在自动途径下的常规阈值和以前的基于线性Q的方法获得更好的评估性能。特别是,具有LSTM和DDQN-EMPC的PPO-EMPC具有PER和LSTM的PPO-EMPC在闭环控制性能和事件触发频率之间获得了较高的平衡。关联的代码是开源的,可在以下网址提供:https://github.com/dangfengying/rl基础基础 - event-triggered-mpc。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
敏锐环境中的敏捷四号飞行有可能彻底改变运输,运输和搜索和救援应用。非线性模型预测控制(NMPC)最近显示了敏捷四足电池控制的有希望的结果,但依赖于高度准确的模型以获得最大性能。因此,模拟了非模型复杂空气动力学效果,不同有效载荷和参数错配的形式的不确定性将降低整体系统性能。本文提出了L1-NMPC,一种新型混合自适应NMPC,用于在线学习模型不确定性,并立即弥补它们,大大提高了与非自适应基线的性能,最小计算开销。我们所提出的体系结构推广到许多不同的环境,我们评估风,未知的有效载荷和高度敏捷的飞行条件。所提出的方法展示了巨大的灵活性和鲁棒性,在大未知干扰下的非自适应NMPC和没有任何增益调整的情况下,超过90%的跟踪误差减少。此外,相同的控制器具有相同的增益可以准确地飞行高度敏捷的赛车轨迹,该轨迹展示最高速度为70公里/小时,相对于非自适应NMPC基线提供约50%的跟踪性能提高。
translated by 谷歌翻译
空中操纵的生长场通常依赖于完全致动的或全向微型航空车(OMAV),它们可以在与环境接触时施加任意力和扭矩。控制方法通常基于无模型方法,将高级扳手控制器与执行器分配分开。如有必要,在线骚扰观察员拒绝干扰。但是,虽然是一般,但这种方法通常会产生次优控制命令,并且不能纳入平台设计给出的约束。我们提出了两种基于模型的方法来控制OMAV,以实现轨迹跟踪的任务,同时拒绝干扰。第一个通过从实验数据中学到的模型来优化扳手命令并补偿模型错误。第二个功能优化了低级执行器命令,允许利用分配无空格并考虑执行器硬件给出的约束。在现实世界实验中显示和评估两种方法的疗效和实时可行性。
translated by 谷歌翻译
模型预测控制(MPC)已成为高性能自治系统嵌入式控制的流行框架。但是,为了使用MPC实现良好的控制性能,准确的动力学模型是关键。为了维持实时操作,嵌入式系统上使用的动力学模型仅限于简单的第一原则模型,该模型实质上限制了其代表性。与此类简单模型相反,机器学习方法,特别是神经网络,已被证明可以准确地建模复杂的动态效果,但是它们的较大的计算复杂性阻碍了与快速实时迭代环路的组合。通过这项工作,我们提出了实时神经MPC,这是一个将大型复杂的神经网络体系结构作为动态模型的框架,在模型预测性控制管道中。 ,展示了所描述的系统的功能,可以使用基于梯度的在线优化MPC运行以前不可行的大型建模能力。与在线优化MPC中神经网络的先前实现相比,我们可以利用嵌入式平台上50Hz实时窗口中的4000倍的型号。此外,与没有神经网络动力学的最新MPC方法相比,我们通过将位置跟踪误差降低多达82%,从而显示了对现实世界问题的可行性。
translated by 谷歌翻译
近年来,机器人技术的最佳控制越来越流行,并且已应用于许多涉及复杂动力系统的应用中。闭环最佳控制策略包括模型预测控制(MPC)和通过ILQR优化的时变线性控制器。但是,此类反馈控制器依赖于当前状态的信息,从而限制了机器人需要记住其在采取行动和相应计划的机器人应用程序范围。最近提出的系统级合成(SLS)框架通过带有内存的较富裕控制器结构来规避此限制。在这项工作中,我们建议通过将SLS扩展到跟踪涉及非线性系统和非二次成本功能的问题,以最佳设计具有记忆力的反应性预期机器人技能。我们以两种情况来展示我们的方法,这些方案利用任务精确度和对象在模拟和真实环境中使用7轴的Franka Emika机器人提供的挑选和位置任务。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译