Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
对非线性不确定系统的控制是机器人技术领域的常见挑战。非线性潜在力模型结合了以高斯流程为特征的潜在不确定性,具有有效代表此类系统的希望,我们专注于这项工作的控制设计。为了实现设计,我们采用了高斯过程的状态空间表示来重塑非线性潜在力模型,从而建立了同时预测未来状态和不确定性的能力。使用此功能,制定了随机模型预测控制问题。为了得出问题的计算算法,我们使用基于方案的方法来制定随机优化的确定性近似。我们通过基于自动驾驶汽车的运动计划的仿真研究评估了最终方案的模型预测控制方法,该研究表现出很大的有效性。拟议的方法可以在其他各种机器人应用中找到前瞻性使用。
translated by 谷歌翻译
稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励示例,请考虑在复杂的环境中自动移动机器人导航。概括到不同操作条件的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,以从轨迹数据中学习哈密顿系统的动态。学识渊博的哈密顿模型用于合成基于能量的被动性控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性界限以及违反安全性的距离,以确保稳健性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四型机器人}在混乱的3D环境中导航。
translated by 谷歌翻译
In this paper, we propose an effective unified control law for accurately tracking agile trajectories for lifting-wing quadcopters with different installation angles, which have the capability of vertical takeoff and landing (VTOL) as well as high-speed cruise flight. First, we derive a differential flatness transform for the lifting-wing dynamics with a nonlinear model under coordinated turn condition. To increase the tracking performance on agile trajectories, the proposed controller incorporates the state and input variables calculated from differential flatness as feedforward. In particular, the jerk, the 3-order derivative of the trajectory, is converted into angular velocity as a feedforward item, which significantly improves the system bandwidth. At the same time, feedback and feedforward outputs are combined to deal with external disturbances and model mismatch. The control algorithm has been thoroughly evaluated in the outdoor flight tests, which show that it can achieve accurate trajectory tracking.
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
敏锐环境中的敏捷四号飞行有可能彻底改变运输,运输和搜索和救援应用。非线性模型预测控制(NMPC)最近显示了敏捷四足电池控制的有希望的结果,但依赖于高度准确的模型以获得最大性能。因此,模拟了非模型复杂空气动力学效果,不同有效载荷和参数错配的形式的不确定性将降低整体系统性能。本文提出了L1-NMPC,一种新型混合自适应NMPC,用于在线学习模型不确定性,并立即弥补它们,大大提高了与非自适应基线的性能,最小计算开销。我们所提出的体系结构推广到许多不同的环境,我们评估风,未知的有效载荷和高度敏捷的飞行条件。所提出的方法展示了巨大的灵活性和鲁棒性,在大未知干扰下的非自适应NMPC和没有任何增益调整的情况下,超过90%的跟踪误差减少。此外,相同的控制器具有相同的增益可以准确地飞行高度敏捷的赛车轨迹,该轨迹展示最高速度为70公里/小时,相对于非自适应NMPC基线提供约50%的跟踪性能提高。
translated by 谷歌翻译
随着机器人在现实世界中冒险,他们受到无意义的动态和干扰。在相对静态和已知的操作环境中已成功地证明了基于传统的基于模型的控制方法。但是,当机器人的准确模型不可用时,基于模型的设计可能导致次优甚至不安全的行为。在这项工作中,我们提出了一种桥接模型 - 现实差距的方法,并且即使存在动态不确定性,也能够应用基于模型的方法。特别地,我们介绍基于学习的模型参考适应方法,其使机器人系统具有可能不确定的动态,表现为预定义的参考模型。反过来,参考模型可用于基于模型的控制器设计。与典型的模型参考调整控制方法相比,我们利用神经网络的代表性力量来捕获高度非线性动力学的不确定性,并通过在称为Lipschitz网络的特殊类型神经网络的建筑设计中编码认证嘴唇条件来捕获高度非线性动力学的不确定性和保证稳定性。即使我们的关于真正的机器人系统的先验知识有限,我们的方法也适用于一般的非线性控制仿射系统。我们展示了我们在飞行倒置摆的方法中的方法,其中一个搁板的四轮电机被挑战,以平衡倒挂摆在悬停或跟踪圆形轨迹时。
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
空中操纵的生长场通常依赖于完全致动的或全向微型航空车(OMAV),它们可以在与环境接触时施加任意力和扭矩。控制方法通常基于无模型方法,将高级扳手控制器与执行器分配分开。如有必要,在线骚扰观察员拒绝干扰。但是,虽然是一般,但这种方法通常会产生次优控制命令,并且不能纳入平台设计给出的约束。我们提出了两种基于模型的方法来控制OMAV,以实现轨迹跟踪的任务,同时拒绝干扰。第一个通过从实验数据中学到的模型来优化扳手命令并补偿模型错误。第二个功能优化了低级执行器命令,允许利用分配无空格并考虑执行器硬件给出的约束。在现实世界实验中显示和评估两种方法的疗效和实时可行性。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
This paper proposes embedded Gaussian Process Barrier States (GP-BaS), a methodology to safely control unmodeled dynamics of nonlinear system using Bayesian learning. Gaussian Processes (GPs) are used to model the dynamics of the safety-critical system, which is subsequently used in the GP-BaS model. We derive the barrier state dynamics utilizing the GP posterior, which is used to construct a safety embedded Gaussian process dynamical model (GPDM). We show that the safety-critical system can be controlled to remain inside the safe region as long as we can design a controller that renders the BaS-GPDM's trajectories bounded (or asymptotically stable). The proposed approach overcomes various limitations in early attempts at combining GPs with barrier functions due to the abstention of restrictive assumptions such as linearity of the system with respect to control, relative degree of the constraints and number or nature of constraints. This work is implemented on various examples for trajectory optimization and control including optimal stabilization of unstable linear system and safe trajectory optimization of a Dubins vehicle navigating through an obstacle course and on a quadrotor in an obstacle avoidance task using GP differentiable dynamic programming (GP-DDP). The proposed framework is capable of maintaining safe optimization and control of unmodeled dynamics and is purely data driven.
translated by 谷歌翻译
在这项工作中,我们考虑使用应用于四逆床控制的模型预测控制(MPC)导出和加入准确动态模型的问题。 MPC依赖于精确的动态模型来实现所需的闭环性能。然而,在复杂系统中存在不确定性以及他们在其运行的环境中的存在在获得对系统动态的充分准确表示方面构成挑战。在这项工作中,我们利用深度学习工具,基于知识的神经常规方程(KNODE),增强了从第一原理获得的模型。由此产生的混合模型包括来自模拟或现实世界实验数据的标称第一原理模型和神经网络。使用四轮压力机,我们将混合模型用于针对最先进的高斯过程(GP)模型,并表明混合模型提供了Quadrotor动态的更准确的预测,并且能够概括超出训练数据。为了提高闭环性能,混合模型集成到新的MPC框架中,称为KNODE-MPC。结果表明,就轨迹跟踪性能而言,综合框架在物理实验中达到了60.2%的仿真和21%以上。
translated by 谷歌翻译
神经网络已越来越多地用于模型预测控制器(MPC)来控制非线性动态系统。但是,MPC仍然提出一个问题,即可实现的更新率不足以应对模型不确定性和外部干扰。在本文中,我们提出了一种新颖的控制方案,该方案可以使用MPC的神经网络动力学设计最佳的跟踪控制器,从而使任何现有基于模型的Feedforward Controller的插件扩展程序都可以应用于插件。我们还描述了我们的方法如何处理包含历史信息的神经网络,该信息不遵循一般的动态形式。该方法通过其在外部干扰的经典控制基准中的性能进行评估。我们还扩展了控制框架,以应用于具有未知摩擦的积极自主驾驶任务。在所有实验中,我们的方法的表现都优于比较的方法。我们的控制器还显示出低控制的水平,表明我们的反馈控制器不会干扰MPC的最佳命令。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
在非线性和不确定动态的情况下,多种自动水下车辆(AUV)的共识形成跟踪是机器人技术的一个挑战性问题。为了应对这一挑战,本文提出了分布式生物启发的滑动模式控制器。首先,提出了常规的滑动模式控制器(SMC),并根据图理论解决共识问题。接下来,为了解决SMC方案中的高频聊天问题并同时提高噪声的鲁棒性,引入了生物启发的方法,其中采用神经动态模型来替换传统滑动模式合成的非线性符号或饱和功能控制器。此外,在Lyapunov稳定性理论的存在下,在存在有界的集体干扰的情况下证明了所得闭环系统的输入到状态稳定性。最后,进行了仿真实验以证明所提出的分布式形成控制方案的有效性。
translated by 谷歌翻译
子格式微型航空车(MAV)中的准确而敏捷的轨迹跟踪是具有挑战性的,因为机器人的小规模会引起大型模型不确定性,要求强大的反馈控制器,而快速的动力学和计算约束则阻止了计算上昂贵的策略的部署。在这项工作中,我们提出了一种在MIT SoftFly(一个子)MAV(0.7克)上进行敏捷和计算有效轨迹跟踪的方法。我们的策略采用了级联的控制方案,在该方案中,自适应态度控制器与受过训练的神经网络政策相结合,以模仿轨迹跟踪可靠的管模型模型预测控制器(RTMPC)。神经网络政策是使用我们最近的工作获得的,这使该政策能够保留RTMPC的稳健性,但以其计算成本的一小部分。我们通过实验评估我们的方法,即使在更具挑战性的操作中,达到均方根误差也低于1.8 cm,与我们先前的工作相比,最大位置误差减少了60%,并证明了对大型外部干扰的稳健性
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译