在非线性和不确定动态的情况下,多种自动水下车辆(AUV)的共识形成跟踪是机器人技术的一个挑战性问题。为了应对这一挑战,本文提出了分布式生物启发的滑动模式控制器。首先,提出了常规的滑动模式控制器(SMC),并根据图理论解决共识问题。接下来,为了解决SMC方案中的高频聊天问题并同时提高噪声的鲁棒性,引入了生物启发的方法,其中采用神经动态模型来替换传统滑动模式合成的非线性符号或饱和功能控制器。此外,在Lyapunov稳定性理论的存在下,在存在有界的集体干扰的情况下证明了所得闭环系统的输入到状态稳定性。最后,进行了仿真实验以证明所提出的分布式形成控制方案的有效性。
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
这项工作提出了一种基于(几乎)全局收敛到所需形状的双极坐标的新型二维形成控制方案(一类微型无环持续图)。规定的绩效控制被用来设计一项分散的控制法,该法律避免了奇异性并引入了针对外部干扰的鲁棒性,同时确保了闭环系统的预定义瞬态和稳态性能。此外,结果表明,所提出的形成控制方案可以同时处理编队操作,缩放和方向规范。此外,拟议的控制法在代理商的任意定向的本地坐标框架中仅使用低成本板视力传感器可以实现,这有利于实际应用。最后,一项编队操纵模拟研究验证了所提出的方法。
translated by 谷歌翻译
对于不确定的多个输入多输出(MIMO)非线性系统,实现渐近跟踪是不平凡的,并且大多数现有方法通常需要某些可控性条件,如果涉及意外的执行器故障,这些条件是相当限制性的,甚至是不切实际的。在本说明中,我们提出了一种能够实现具有较不保守(更实用)可控性条件的零误差稳态跟踪的方法。通过将新颖的Nussbaum增益技术和一些积极的集成函数纳入控制设计,我们为系统开发了强大的自适应渐近跟踪控制方案,随着时变的控制增益未知其幅度和方向。通过诉诸某些可行的辅助矩阵的存在,进一步放松了当前的最新可控性条件,从而扩大了可以在拟议的控制方案中考虑的系统类别。所有闭环信号均被确保在全球范围内最终均匀界定。此外,这种控制方法进一步扩展到涉及间歇性执行器断层以及适用于机器人系统的情况。最后,进行了模拟研究以证明该方法的有效性和灵活性。
translated by 谷歌翻译
在本文中,提出了针对动力学不确定性的机器人操纵器提出的人工延迟阻抗控制器。控制定律将超级扭曲算法(STA)类型的二阶切换控制器通过新颖的广义过滤跟踪误差(GFTE)统一延迟估计(TDE)框架。虽然时间延迟的估计框架可以通过估算不确定的机器人动力学和相互作用力来从状态和控制工作的近期数据中估算不确定的机器人动力学和相互作用力来准确建模机器人动力学,但外部循环中的第二阶切换控制法可以在时间延迟估计的情况下提供稳健性(TDE)由于操纵器动力学的近似而引起的误差。因此,拟议的控制定律试图在机器人最终效应变量之间建立所需的阻抗模型,即在存在不确定性的情况下,在遇到平滑接触力和自由运动期间的力和运动。使用拟议的控制器以及收敛分析的两个链接操纵器的仿真结果显示出验证命题。
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
形成控制问题是群体智能领域中最关心的主题之一,通常通过常规数学方法来解决。然而,在本文中,我们提出了一种元疗法方法,该方法利用了一种自然的共同进化策略来解决一群导弹的形成控制问题。导弹群是由具有异质参考目标的二阶系统建模的,并将指数误差函数作为目标函数,以使群体融合到满足某些形成要求的最佳平衡状态。为了关注本地最佳和不稳定进化的问题,我们纳入了一种新颖的基于模型的政策约束和人口适应策略,从而大大减轻了绩效退化。通过在网络通信领域中应用Molloy reed标准,我们开发了一种自适应拓扑方法,该方法可以通过理论和实验验证节点失败及其有效性下的连通性及其有效性。实验结果有助于提议的形成控制方法的有效性。更重要的是,我们表明将通用形成控制问题视为马尔可夫决策过程(MDP)并通过迭代学习解决它是可行的。
translated by 谷歌翻译
由于领导者的动态信息对所有跟随节点未知,所以基于知识的非线性多种代理系统的同步问题是具有挑战性的。本文提出了一类非线性领导系统的基于学习的完全分布式观察者,可以同时学习领导者的动态和状态。这里考虑的领导者动态不需要有界雅各的矩阵。基于基于学习的分布式观察者,我们进一步综合了一种自适应分布式控制法,用于解决经受不确定非线性领导系统的多个Euler-Lagrange系统的前导次的同步问题。结果由模拟示例说明。
translated by 谷歌翻译
跟踪控制一直是机器人技术的重要研究主题。本文为基于生物启发的神经动力学模型提供了一种新型的混合控制策略(UUV)。首先开发了增强的反向运动控制策略,以避免急速速度跳跃,并提供相对于常规方法的光滑速度命令。然后,提出了一种新颖的滑动模式控制,该控制能够提供平滑而连续的扭矩命令,没有颤动。在比较研究中,提出的合并混合控制策略确保了控制信号的平滑度,这在现实世界中至关重要,尤其是对于需要在复杂的水下环境中运行的无人水下车辆。
translated by 谷歌翻译
Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
在本文中,我们考虑了分布式多机器人系统(MRSS)的两个耦合问题,与有限的视野(FOV)传感器协调:交互的自适应调整和传感器攻击的拒绝。首先,分布式控制框架(例如,潜在字段)的典型缺点是整体系统行为对分配给相对交互的增益非常敏感。其次,有限的FOV传感器MRSS可以更容易受到针对他们的FOV的传感器攻击,因此必须适应这种攻击。基于这些缺点,我们提出了一个全面的解决方案,将自适应增益调整和攻击恢复能力结合在拓扑控制中,为有限的FOVS拓扑控制问题。具体地,我们首先基于满足标称成对相互作用来得出自适应增益调谐方案,这产生了机器人邻域中的相互作用强度的动态平衡。然后,我们通过采用静态输出反馈技术来模拟附加传感器和执行器攻击(或故障)并导出H无限控制协议,保证受攻击(故障)信号引起的误差的界限L2增益。最后,提供了使用ROS Gazebo的仿真结果来支持我们的理论发现。
translated by 谷歌翻译
由于过去几十年中获得的大量技术改进,因此可以使用机器人车进行水下勘探。这项工作描述了用于基于水下车辆的动态定位系统的开发。采用的方法是使用Lyapunov稳定性理论开发的,并通过基于神经网络的算法增强了不确定性和干扰补偿。通过数值模拟评估所提出的控制方案的性能。
translated by 谷歌翻译
本文研究了控制多机器人系统以自组织方式实现多边形形成的问题。与典型的形成控制策略不同,在该策略中,机器人被转向以满足预定义的控制变量,例如成对距离,相对位置和轴承,本文的最重要思想是通过将控制输入随机输入到一些机器人(说说)(说说) ,组的顶点机器人),其余的遵循的简单原理是向环形图中的两个最近邻居的中点移动,而没有任何外部输入。在我们的问题中,机器人最初分布在飞机上。 Sopalled Vertex机器人负责确定整个编队的几何形状及其整体大小,而其他人则移动,以最大程度地减少两个直接邻居的差异。在第一步中,每个顶点机器人估计其相关链中机器人的数量。用于估计的两种类型的控制输入是使用最新和最后两次瞬间的测量设计设计的。在第二步中,提出了自组织的形成控制法,只有顶点机器人收到外部信息。两种估计策略之间的比较是根据收敛速度和稳健性进行的。在模拟和物理实验中,整个控制框架的有效性得到了进一步验证。
translated by 谷歌翻译
最近的四型车辆超越了常规设计,更加强调可折叠和可重构的身体。但是,最新的状态仍然着重于此类设计的机械可行性,在配置切换过程中有关车辆的跟踪性能的讨论有限。在本文中,我们提出了一个完整的控制和计划框架,用于在配置切换过程中进行态度跟踪并遏制任何基于开关的干扰,这可能导致违反安全限制并导致崩溃。控制框架包括一个具有估计器的形态感知自适应控制器,以说明参数变化和最小值轨迹计划器,以在切换时实现稳定的飞行。态度跟踪的稳定性分析是通过采用开关系统理论和仿真结果来验证了拟议的框架,该框架是通过通道通过通道的可折叠四极管飞行的框架。
translated by 谷歌翻译
软机器均由柔顺性和可变形的材料制成,可以对传统的刚性机器人进行具有挑战性的任务。软机器人的固有依从性使其更适合和适应与人类和环境的相互作用。然而,这种优势以成本为准:他们的连续性性质使得强大地发展基于稳健的基于模型的控制策略。具体地,解决这一挑战的自适应控制方法尚未应用于物理软机械臂。这项工作介绍了使用Euler-Lagrange方法对软连续式机械手进行动态的重新装配。该模型消除了先前作品中的简化假设,并提供了更准确的机器人惯性描述。基于我们的模型,我们介绍了任务空间自适应控制方案。该控制器对模型参数不确定性和未知输入干扰具有稳健。控制器在物理软连续臂上实现。进行了一系列实验以验证控制器在不同有效载荷下的任务空间轨迹跟踪中的有效性。在准确性和稳健性方面,控制器均优于最先进的方法。此外,所提出的基于模型的控制设计是柔性的,并且可以广泛地推广到具有任意数量的连续段的任何连续型机器人臂。
translated by 谷歌翻译
无人管理的水下车辆(UUV)的运动计划和跟踪控制技术对于高效且强大的UUV导航至关重要,这对于水下救援,设施维护,海洋资源探索,水上娱乐等至关重要。控制范围一直在全球范围内迅速增长,通常将其分类为以下主题:多UUV系统的任务分配,UUV路径计划和UUV轨迹跟踪。本文提供了对传统和智能技术的全面审查,用于运动计划和跟踪UUV的控制。介绍了文献中这些各种方法的益处和缺点的分析。此外,为将来的研究提供了UV运动计划和跟踪控制的挑战和前景。
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译