跟踪控制一直是机器人技术的重要研究主题。本文为基于生物启发的神经动力学模型提供了一种新型的混合控制策略(UUV)。首先开发了增强的反向运动控制策略,以避免急速速度跳跃,并提供相对于常规方法的光滑速度命令。然后,提出了一种新颖的滑动模式控制,该控制能够提供平滑而连续的扭矩命令,没有颤动。在比较研究中,提出的合并混合控制策略确保了控制信号的平滑度,这在现实世界中至关重要,尤其是对于需要在复杂的水下环境中运行的无人水下车辆。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
在非线性和不确定动态的情况下,多种自动水下车辆(AUV)的共识形成跟踪是机器人技术的一个挑战性问题。为了应对这一挑战,本文提出了分布式生物启发的滑动模式控制器。首先,提出了常规的滑动模式控制器(SMC),并根据图理论解决共识问题。接下来,为了解决SMC方案中的高频聊天问题并同时提高噪声的鲁棒性,引入了生物启发的方法,其中采用神经动态模型来替换传统滑动模式合成的非线性符号或饱和功能控制器。此外,在Lyapunov稳定性理论的存在下,在存在有界的集体干扰的情况下证明了所得闭环系统的输入到状态稳定性。最后,进行了仿真实验以证明所提出的分布式形成控制方案的有效性。
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
随着垂直起飞和着陆和长航时的特点,倾转旋翼吸引了相当多的关注近几十年来其在民用和科研应用潜力。然而,强耦合,非线性特性和不匹配的干扰的问题,不可避免地存在于倾转旋翼机,它带来的过渡模式控制器的设计极大的挑战。在本文中,我们结合一个超扭曲扩张状态观测器(STESO)具有自适应递归滑模控制(ARSMC)一起使用STESO-ARSMC(SAC)来设计以过渡模式倾转旋翼飞行器姿态系统控制器。首先,六个自由度的倾转旋翼的(DOF)的非线性数学模型被建立。其次,美国和干扰是由STES观察者估计。第三,ARSM控制器旨在实现有限时间内收敛。 Lyapunov函数用来作证的倾转旋翼无人机系统的融合。新的方面是,状态的评估被并入控制规则来调整中断。相较于先前技术,控制系统,这项工作可以大大提高抗干扰性能提出。最后,模拟试验,是要证明建议的技术的有效性。
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
由于这些要求的竞争性质,尤其是在一系列的运行速度和条件下,在转向控制中的准确性和误差融合与优美运动的平衡路径与优美的运动具有挑战性。本文表明,考虑滑移对运动学控制,动态控制和转向执行器速率命令的影响的集成多层转向控制器可实现准确且优美的路径。这项工作建立在多层侧滑和基于YAW的模型上,该模型允许派生控制器考虑由于侧滑而引起的误差以及转向命令和优美的侧向运动之间的映射。基于观察者的侧滑估计与运动控制器中的标题误差相结合,以提供前馈滑移补偿。使用基于速度的路径歧管,通过连续变量结构控制器(VSC)来补偿路径以下误差,以平衡优雅的运动和误差收敛。后台动态控制器使用结果偏航率命令来生成转向率命令。高增益观察者(HGO)估计输出反馈控制的侧滑和偏航率。提供了输出反馈控制器的稳定性分析,并解决了峰值。该工作仅针对侧向控制,因此转向控制器可以与其他速度控制器结合使用。现场结果提供了与相关方法的比较,这些方法在不同的复杂情况下证明了具有不同天气条件和扰动的不同复杂情况。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
本文提出了一种校准控制参数的方法。这种控制参数的示例是PID控制器的增益,优化控制的成本函数的权重,过滤器系数,滑动模式控制器的滑动表面,或神经网络的权重。因此,所提出的方法可以应用于各种控制器。该方法使用闭环系统操作数据来估计控制参数而不是系统状态的卡尔曼滤波器。控制参数校准由训练目标驱动,其包括对动态系统性能的规范。校准方法在线和强大地调整参数,是计算效率,具有低数据存储要求,并且易于实现对许多实时应用的吸引力。仿真结果表明,该方法能够快速学习控制参数(闭环成本的平均衰减因子大约24%),能够调整参数来补偿干扰(跟踪精度的提高约29%),并且是坚固的噪音。此外,具有高保真车辆模拟器Carim的仿真研究表明,该方法可以在线校准复杂动态系统的控制器,这表明其对现实世界的适用性。
translated by 谷歌翻译
在本文中,提出了一个稳定稳定的轨迹跟踪控制器,用于多uav有效载荷运输。多uav有效负载系统在无人机和有效负载框架的垂直刚性链接之间具有2DOF磁球接头,因此无人机可以自由滚动或自由投球。这些垂直链接紧密地连接到有效载荷上,无法移动。为完整的有效载体 - uav系统得出了输入输出反馈线性化模型以及有效载荷轨迹跟踪的推力矢量控制。关于跟踪控制定律的理论分析表明,控制定律是指数稳定的,从而确保了沿期望轨迹的安全运输。为了验证拟议的控制定律的性能,提供了数值模拟以及高保真凉亭实时仿真的结果。接下来,针对两种实际情况分析了提议的控制器的鲁棒性:有效载荷和有效载荷质量不确定性的外部干扰。结果清楚地表明,所提出的控制器在实现指数稳定的轨迹跟踪的同时具有稳健性和计算效率。
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
This book provides a solution to the control and motion planning design for an octocopter system. It includes a particular choice of control and motion planning algorithms which is based on the authors' previous research work, so it can be used as a reference design guidance for students, researchers as well as autonomous vehicles hobbyists. The control is constructed based on a fault tolerant approach aiming to increase the chances of the system to detect and isolate a potential failure in order to produce feasible control signals to the remaining active motors. The used motion planning algorithm is risk-aware by means that it takes into account the constraints related to the fault-dependant and mission-related maneuverability analysis of the octocopter system during the planning stage. Such a planner generates only those reference trajectories along which the octocopter system would be safe and capable of good tracking in case of a single motor fault and of majority of double motor fault scenarios. The control and motion planning algorithms presented in the book aim to increase the overall reliability of the system for completing the mission.
translated by 谷歌翻译
无人管理的水下车辆(UUV)的运动计划和跟踪控制技术对于高效且强大的UUV导航至关重要,这对于水下救援,设施维护,海洋资源探索,水上娱乐等至关重要。控制范围一直在全球范围内迅速增长,通常将其分类为以下主题:多UUV系统的任务分配,UUV路径计划和UUV轨迹跟踪。本文提供了对传统和智能技术的全面审查,用于运动计划和跟踪UUV的控制。介绍了文献中这些各种方法的益处和缺点的分析。此外,为将来的研究提供了UV运动计划和跟踪控制的挑战和前景。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
外部磁场可用于远程控制小尺寸的机器人,使其具有多样化的生物医学和工程应用的候选人。我们表明,我们的磁动毫罗罗布特是高度敏捷的,并且可以执行各种机车任务,例如枢轴行走和在水平面翻滚。在这里,我们专注于控制枢轴行走模式中该毫无米罗罗布特的运动效果。开发了系统的数学模型,派生了运动模型。还研究了机器人运动中扫描和倾斜角度的作用。我们提出了两个控制器来调节枢轴步行者的步态。第一个是比例几何控制器,它决定了Millobot应该使用的正确枢轴点。然后,它基于毫无槌和参考轨迹的中心之间的误差按比例地调节角速度。第二控制器基于梯度下降优化技术,其表示控制动作作为优化问题。这些控制算法使得MilliRobot能够在跟踪所需的轨迹时产生稳定的步态。我们进行一组不同的实验和模拟运行,以确定所提出的控制器在跟踪误差方面的不同扫描和倾斜角度的有效性。这两个控制器表现出适当的性能,但观察到基于梯度下降基于的控制器产生更快的收敛时间,更小的跟踪误差和更少的步数。最后,我们对扫描角度,倾斜角度和步进时间对跟踪误差的影响进行了广泛的实验参数分析。正如我们所预期的那样,基于优化的控制器优于基于几何的控制器。
translated by 谷歌翻译
在本文中,提出了针对动力学不确定性的机器人操纵器提出的人工延迟阻抗控制器。控制定律将超级扭曲算法(STA)类型的二阶切换控制器通过新颖的广义过滤跟踪误差(GFTE)统一延迟估计(TDE)框架。虽然时间延迟的估计框架可以通过估算不确定的机器人动力学和相互作用力来从状态和控制工作的近期数据中估算不确定的机器人动力学和相互作用力来准确建模机器人动力学,但外部循环中的第二阶切换控制法可以在时间延迟估计的情况下提供稳健性(TDE)由于操纵器动力学的近似而引起的误差。因此,拟议的控制定律试图在机器人最终效应变量之间建立所需的阻抗模型,即在存在不确定性的情况下,在遇到平滑接触力和自由运动期间的力和运动。使用拟议的控制器以及收敛分析的两个链接操纵器的仿真结果显示出验证命题。
translated by 谷歌翻译
由于过去几十年中获得的大量技术改进,因此可以使用机器人车进行水下勘探。这项工作描述了用于基于水下车辆的动态定位系统的开发。采用的方法是使用Lyapunov稳定性理论开发的,并通过基于神经网络的算法增强了不确定性和干扰补偿。通过数值模拟评估所提出的控制方案的性能。
translated by 谷歌翻译
自适应控制可以解决控制系统中的模型不确定性。但是,它是专为跟踪控制而设计的。近期机器人控制的最新进步表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们提出了一种用于腿机器人的新型自适应力控制框架。我们以我们提出的方法介绍了一种新的架构,将自适应控制纳入二次编程(QP)力控制。由于我们的方法是基于力控制,它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软撞击的鲁棒性。我们的方法在模拟和硬件实验中成功验证。虽然基线QP控制在具有小负载的身体跟踪误差中显示出显着的降级,但我们所提出的基于自适应力的控制可以使12千克Unitree A1机器人能够在粗糙的地形上行走,同时承载最多6次kg(50%的机器人重量)。当站在四条腿时,我们所提出的自适应控制甚至可以允许机器人在机器人高度中携带多达11kg的负载(机器人重量的92%),并且在机器人高度中具有小于5cm的跟踪误差。
translated by 谷歌翻译
软机器均由柔顺性和可变形的材料制成,可以对传统的刚性机器人进行具有挑战性的任务。软机器人的固有依从性使其更适合和适应与人类和环境的相互作用。然而,这种优势以成本为准:他们的连续性性质使得强大地发展基于稳健的基于模型的控制策略。具体地,解决这一挑战的自适应控制方法尚未应用于物理软机械臂。这项工作介绍了使用Euler-Lagrange方法对软连续式机械手进行动态的重新装配。该模型消除了先前作品中的简化假设,并提供了更准确的机器人惯性描述。基于我们的模型,我们介绍了任务空间自适应控制方案。该控制器对模型参数不确定性和未知输入干扰具有稳健。控制器在物理软连续臂上实现。进行了一系列实验以验证控制器在不同有效载荷下的任务空间轨迹跟踪中的有效性。在准确性和稳健性方面,控制器均优于最先进的方法。此外,所提出的基于模型的控制设计是柔性的,并且可以广泛地推广到具有任意数量的连续段的任何连续型机器人臂。
translated by 谷歌翻译