Recommender systems aim to answer the following question: given the items that a user has interacted with, what items will this user likely interact with next? Historically this problem is often framed as a predictive task via (self-)supervised learning. In recent years, we have seen more emphasis placed on approaching the recommendation problem from a policy optimization perspective: learning a policy that maximizes some reward function (e.g., user engagement). However, it is commonly the case in recommender systems that we are only able to train a new policy given data collected from a previously-deployed policy. The conventional way to address such a policy mismatch is through importance sampling correction, which unfortunately comes with its own limitations. In this paper, we suggest an alternative approach, which involves the use of local policy improvement without off-policy correction. Drawing from a number of related results in the fields of causal inference, bandits, and reinforcement learning, we present a suite of methods that compute and optimize a lower bound of the expected reward of the target policy. Crucially, this lower bound is a function that is easy to estimate from data, and which does not involve density ratios (such as those appearing in importance sampling correction). We argue that this local policy improvement paradigm is particularly well suited for recommender systems, given that in practice the previously-deployed policy is typically of reasonably high quality, and furthermore it tends to be re-trained frequently and gets continuously updated. We discuss some practical recipes on how to apply some of the proposed techniques in a sequential recommendation setting.
translated by 谷歌翻译
工业推荐系统处理极大的行动空间 - 许多数百万的项目推荐。此外,他们需要为数十亿用户服务,他们在任何时间点都是独一无止的,制作复杂的用户状态空间。幸运的是,可以学习大量记录的隐式反馈(例如,用户点击,停留时间)。然而,从记录的反馈中学习,才受到仅通过以前版本的推荐器选择的建议的反馈而导致的偏差。在这项工作中,我们展示了在YouTube的生产Top-K推荐系统中解决此类偏差的一般配方,以策略梯度为基础的算法,即加强。本文的贡献是:(1)缩放到生产推荐系统,以数百万的订单为行动空间; (2)申请违规纠正以解决从多种行为策略收集的记录反馈中学习数据偏差; (3)提出新的Top-K违规纠正,以占我们的政策一次推荐多个项目; (4)展示勘探的价值。我们展示了我们通过一系列模拟和youtube上的多个实时实验的方法。
translated by 谷歌翻译
作为加强学习(RL)通过奖励信号铸造的基于会议或顺序推荐是一个有前途的研究方向,旨在最大化累积利润的推荐系统(RS)。然而,由于违规培训,巨大的动作空间和缺乏足够的奖励信号,RL算法中的RL算法直接使用RL算法是不切实际的。最近的RL用于RS试图通过结合RL和(自我)监督的连续学习来解决这些挑战的方法,但仍然遭受某些限制。例如,由于缺少负奖励信号,Q值的估计趋于向正值偏置。此外,Q值也大量取决于序列的特定时间戳。为了解决上述问题,我们提出了培训RL组件的负面采样策略,并将其与监督顺序学习结合起来。我们称这种方法监督负面Q-Learning(SNQN)。基于采样(否定)动作(项目),我们可以计算平均案例的积极动作的“优势”,这可以进一步用于学习监督的顺序部分的标准化重量。这导致了另一个学习框架:监督优势演员 - 评论家(SA2C)。我们使用四个最先进的顺序推荐模型实例化SNQN和SA2C,并在两个现实世界数据集中进行实验。实验结果表明,拟议的方法比最先进的监督方法和现有的自我监督的RL方法达到明显更好的性能。代码将是开放的。
translated by 谷歌翻译
我们介绍了概率等级和奖励模型(PRR),这是一个可扩展的概率模型,用于个性化的Slate建议。我们的模型允许在以下无处不在的推荐系统方案中对用户兴趣的最新估计:向用户显示了k个建议的板岩,用户最多可以选择这些K项目中的一个。推荐系统的目标是找到用户最感兴趣的K项目,以最大程度地提高用户与Slate交互的可能性。我们的贡献是表明,我们可以通过结合奖励(无论是否单击板岩,以及等级)而更有效地学习建议成功的可能性。我们的方法比仅使用奖励和仅使用等级的用户偏好方法的盗销方法更有效地学习。它还提供了与独立的逆点分数方法相似或更好的估计性能,并且更可扩展。我们的方法是在大量数据集中的速度和准确性方面的最高速度,最多100万个项目。最后,我们的方法允许快速交付由最大内部产品搜索(MIPS)提供动力的建议,使其适用于极低的延迟域,例如计算广告。
translated by 谷歌翻译
推荐系统(RS)是一个重要的在线应用程序,每天都会影响数十亿个用户。主流RS排名框架由两个部分组成:多任务学习模型(MTL),该模型可预测各种用户反馈,即点击,喜欢,分享和多任务融合模型(MTF),该模型(MTF)结合了多任务就用户满意度而言,输出分为最终排名得分。关于融合模型的研究并不多,尽管它对最终建议作为排名的最后一个关键过程有很大的影响。为了优化长期用户满意度,而不是贪婪地获得即时回报,我们将MTF任务作为Markov决策过程(MDP),并在推荐会话中提出,并建议基于批处理加固学习(RL)基于多任务融合框架(BATCHRL-MTF)包括批处理RL框架和在线探索。前者利用批处理RL从固定的批处理数据离线学习最佳推荐政策,以达到长期用户满意度,而后者则探索了潜在的高价值动作在线,以突破本地最佳难题。通过对用户行为的全面调查,我们通过从用户粘性和用户活动性的两个方面的微妙启发式方法对用户满意度进行了建模。最后,我们对十亿个样本级别的现实数据集进行了广泛的实验,以显示模型的有效性。我们建议保守的离线政策估计器(保守 - 访问器)来测试我们的模型离线。此外,我们在真实推荐环境中进行在线实验,以比较不同模型的性能。作为成功在MTF任务中应用的少数批次RL研究之一,我们的模型也已部署在一个大规模的工业短视频平台上,为数亿用户提供服务。
translated by 谷歌翻译
Counterfactual reasoning from logged data has become increasingly important for many applications such as web advertising or healthcare. In this paper, we address the problem of learning stochastic policies with continuous actions from the viewpoint of counterfactual risk minimization (CRM). While the CRM framework is appealing and well studied for discrete actions, the continuous action case raises new challenges about modelization, optimization, and~offline model selection with real data which turns out to be particularly challenging. Our paper contributes to these three aspects of the CRM estimation pipeline. First, we introduce a modelling strategy based on a joint kernel embedding of contexts and actions, which overcomes the shortcomings of previous discretization approaches. Second, we empirically show that the optimization aspect of counterfactual learning is important, and we demonstrate the benefits of proximal point algorithms and differentiable estimators. Finally, we propose an evaluation protocol for offline policies in real-world logged systems, which is challenging since policies cannot be replayed on test data, and we release a new large-scale dataset along with multiple synthetic, yet realistic, evaluation setups.
translated by 谷歌翻译
移动通知系统在各种应用程序中起着重要作用,以通信,向用户发送警报和提醒,以告知他们有关新闻,事件或消息的信息。在本文中,我们将近实时的通知决策问题制定为马尔可夫决策过程,在该过程中,我们对奖励中的多个目标进行了优化。我们提出了一个端到端的离线增强学习框架,以优化顺序通知决策。我们使用基于保守的Q学习的双重Q网络方法来应对离线学习的挑战,从而减轻了分配转移问题和Q值高估。我们说明了完全部署的系统,并通过离线和在线实验证明了拟议方法的性能和好处。
translated by 谷歌翻译
尽管学习环境内部模型的强化学习(RL)方法具有比没有模型的对应物更有效的样本效率,但学会从高维传感器中建模原始观察结果可能具有挑战性。先前的工作通过通过辅助目标(例如重建或价值预测)学习观察值的低维表示来解决这一挑战。但是,这些辅助目标与RL目标之间的一致性通常不清楚。在这项工作中,我们提出了一个单一的目标,该目标共同优化了潜在空间模型和政策,以实现高回报,同时保持自洽。这个目标是预期收益的下限。与基于模型的RL在策略探索或模型保证方面的先前范围不同,我们的界限直接依靠整体RL目标。我们证明,所得算法匹配或改善了最佳基于模型和无模型的RL方法的样品效率。尽管这种有效的样品方法通常在计算上是要求的,但我们的方法在较小的壁式锁定时间降低了50 \%。
translated by 谷歌翻译
在基于学术和行业的研究中,在线评估方法都被视为推荐系统等交互式应用程序的黄金标准。自然,这样做的原因是,我们可以直接测量依赖干预措施的实用程序指标,这是向用户显示的建议。然而,由于多种原因,在线评估方法是昂贵的,并且对于可靠的离线评估程序仍然存在明确的需求。在行业中,离线指标通常被用作一线评估,以生成有前途的候选模型来在线评估。在学术工作中,对在线系统的有限访问使离线指标是验证新方法的事实上的方法。存在两个类别的离线指标:基于代理的方法和反事实方法。头等舱通常与我们关心的在线指标相关,而后一类仅根据在现实世界中无法实现的假设提供理论保证。在这里,我们表明基于模拟的比较为离线指标提供了前进的方向,并认为它们是可取的评估手段。
translated by 谷歌翻译
离线政策优化可能会对许多现实世界的决策问题产生重大影响,因为在线学习在许多应用中可能是不可行的。重要性采样及其变体是离线策略评估中一种常用的估计器类型,此类估计器通常不需要关于价值函数或决策过程模型功能类的属性和代表性能力的假设。在本文中,我们确定了一种重要的过度拟合现象,以优化重要性加权收益,在这种情况下,学到的政策可以基本上避免在最初的状态空间的一部分中做出一致的决策。我们提出了一种算法,以避免通过新的每个国家 - 邻居标准化约束过度拟合,并提供对拟议算法的理论理由。我们还显示了以前尝试这种方法的局限性。我们在以医疗风格的模拟器为中测试算法,该模拟器是从真实医院收集的记录数据集和连续的控制任务。这些实验表明,与最先进的批处理学习算法相比,所提出的方法的过度拟合和更好的测试性能。
translated by 谷歌翻译
Softmax政策的政策梯度(PG)估计与子最佳饱和初始化无效,当密度集中在次良动作时发生。从策略初始化或策略已经收敛后发生的环境的突然变化可能会出现次优策略饱和度,并且SoftMax PG估计器需要大量更新以恢复有效的策略。这种严重问题导致高样本低效率和对新情况的适应性差。为缓解此问题,我们提出了一种新的政策梯度估计,用于软MAX策略,该估计在批评中利用批评中的偏差和奖励信号中存在的噪声来逃避策略参数空间的饱和区域。我们对匪徒和古典MDP基准测试任务进行了分析和实验,表明我们的估算变得更加坚固,以便对政策饱和度更加强大。
translated by 谷歌翻译
由于策略梯度定理导致的策略设置存在各种理论上 - 声音策略梯度算法,其为梯度提供了简化的形式。然而,由于存在多重目标和缺乏明确的脱助政策政策梯度定理,截止策略设置不太明确。在这项工作中,我们将这些目标统一到一个违规目标,并为此统一目标提供了政策梯度定理。推导涉及强调的权重和利息职能。我们显示多种策略来近似梯度,以识别权重(ACE)称为Actor评论家的算法。我们证明了以前(半梯度)脱离政策演员 - 评论家 - 特别是offpac和DPG - 收敛到错误的解决方案,而Ace找到最佳解决方案。我们还强调为什么这些半梯度方法仍然可以在实践中表现良好,表明ace中的方差策略。我们经验研究了两个经典控制环境的若干ACE变体和基于图像的环境,旨在说明每个梯度近似的权衡。我们发现,通过直接逼近强调权重,ACE在所有测试的所有设置中执行或优于offpac。
translated by 谷歌翻译
政策梯度定理(Sutton等,2000)规定了目标政策下的累积折扣国家分配以近似梯度。实际上,基于该定理的大多数算法都打破了这一假设,引入了分布转移,该分配转移可能导致逆转溶液的收敛性。在本文中,我们提出了一种新的方法,可以从开始状态重建政策梯度,而无需采取特定的采样策略。可以根据梯度评论家来简化此形式的策略梯度计算,由于梯度的新钟声方程式,可以递归估算。通过使用来自差异数据流的梯度评论家的时间差异更新,我们开发了第一个以无模型方式避开分布变化问题的估计器。我们证明,在某些可实现的条件下,无论采样策略如何,我们的估计器都是公正的。我们从经验上表明,我们的技术在存在非政策样品的情况下实现了卓越的偏见变化权衡和性能。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
强化学习中的信用作业是衡量行动对未来奖励的影响的问题。特别是,这需要从运气中分离技能,即解除外部因素和随后的行动对奖励行动的影响。为实现这一目标,我们将来自因果关系的反事件的概念调整为无模型RL设置。关键思想是通过学习从轨迹中提取相关信息来应对未来事件的价值函数。我们制定了一系列政策梯度算法,这些算法使用这些未来条件的价值函数作为基准或批评,并表明它们是可怕的差异。为避免对未来信息的调理潜在偏见,我们将后视信息限制为不包含有关代理程序行为的信息。我们展示了我们对许多说明性和具有挑战性问题的算法的功效和有效性。
translated by 谷歌翻译