Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models' behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being explained, and that the quality of explanations can be measured by the simulation accuracy of students on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to improve the quality of the explanations themselves, specifically by optimizing explanations such that student models more effectively learn to simulate the original model. We train models on three natural language processing and computer vision tasks, and find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods. Through human annotations and a user study, we further find that these learned explanations more closely align with how humans would explain the required decisions in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold
translated by 谷歌翻译
虽然许多方法旨在通过突出突出特征来解释预测,但是这些解释服务的目标以及如何评估它们通常不合适。在这项工作中,我们介绍了一个框架,通过在训练教师模型的学生模型上授予学生模型的准确性增益来量化解释的价值。至关重要的是,培训期间学生可以使用解释,但在测试时间不可用。与先前的建议相比,我们的方法不太易于绘制,实现原则,自动,模型 - 无话会的归属。使用我们的框架,我们比较了许多归属方法,用于文本分类和问题应答,并观察不同学生模型架构和学习策略之间的定量差异(在中度到高度)。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
序列模型是现代NLP系统的关键组成部分,但它们的预测难以解释。我们考虑虽然可以解释单个模型预测的基础,但是可以解释各种模型预测的上下文的模型解释。通过解决组合优化来找到顺序律师:最佳理由是输入令牌的最小子集,这些令牌将预测与完整序列相同的输出。枚举所有子集是棘手的,因此我们提出了一种高效的贪婪算法来近似这个目标。称为贪婪合理化的算法适用于任何模型。对于这种方法有效,模型应该在对上下文的不完整子集进行预测时形成兼容的条件分布。这种情况可以用短的微调步骤强制执行。我们研究语言建模与机器翻译的贪婪合理化。与现有的基线相比,贪婪合理化是最优化组合目标的,并提供最忠实的理由。在注释的顺序理由的新数据集中,贪婪的理由与人类理由最相似。
translated by 谷歌翻译
我们介绍了IST和Unmabel对WMT 2022关于质量估计(QE)的共享任务的共同贡献。我们的团队参与了所有三个子任务:(i)句子和单词级质量预测;(ii)可解释的量化宽松;(iii)关键错误检测。对于所有任务,我们在彗星框架之上构建,将其与OpenKIWI的预测估计架构连接,并为其配备单词级序列标记器和解释提取器。我们的结果表明,在预处理过程中合并参考可以改善下游任务上多种语言对的性能,并且通过句子和单词级别的目标共同培训可以进一步提高。此外,将注意力和梯度信息结合在一起被证明是提取句子级量化量化宽松模型的良好解释的首要策略。总体而言,我们的意见书在几乎所有语言对的所有三个任务中都取得了最佳的结果。
translated by 谷歌翻译
变形金刚在NLP中广泛使用,它们始终如一地实现最先进的性能。这是由于他们基于注意力的架构,这使他们能够对单词之间的丰富语言关系进行建模。但是,变压器很难解释。能够为其决策提供推理是人类生命受影响的领域(例如仇恨言论检测和生物医学)的模型的重要特性。随着变压器在这些领域中发现广泛使用,因此需要为其量身定制的可解释性技术。在这项工作中研究了基于注意力的可解释性技术对文本分类中的有效性。尽管担心文献中的基于注意力的解释,但我们表明,通过适当的设置,可以将注意力用于此类任务,结果与最先进的技术相当,同时也更快,更友好。我们通过采用新功能重要性指标的一系列实验来验证我们的主张。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
自我监督的视觉学习彻底改变了深度学习,成为域中的下一个重大挑战,并通过大型计算机视觉基准的监督方法迅速缩小了差距。随着当前的模型和培训数据成倍增长,解释和理解这些模型变得关键。我们研究了视力任务的自我监督学习领域中可解释的人工智能的问题,并提出了了解经过自学训练的网络及其内部工作的方法。鉴于自我监督的视觉借口任务的巨大多样性,我们缩小了对理解范式的关注,这些范式从同一图像的两种观点中学习,主要是旨在了解借口任务。我们的工作重点是解释相似性学习,并且很容易扩展到所有其他借口任务。我们研究了两个流行的自我监督视觉模型:Simclr和Barlow Twins。我们总共开发了六种可视化和理解这些模型的方法:基于扰动的方法(条件闭塞,上下文无形的条件闭塞和成对的闭塞),相互作用-CAM,特征可视化,模型差异可视化,平均变换和像素无形。最后,我们通过将涉及单个图像的监督图像分类系统量身定制的众所周知的评估指标来评估这些解释,并将其涉及两个图像的自我监督学习领域。代码为:https://github.com/fawazsammani/xai-ssl
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
采用注意机制的普遍性引起了人们对注意力分布的解释性的关注。尽管它提供了有关模型如何运行的见解,但由于对模型预测的解释仍然非常怀疑,但它利用了注意力。社区仍在寻求更容易解释的策略,以更好地识别最终决定最大的本地活跃地区。为了提高现有注意模型的解释性,我们提出了一种新型的双线性代表性非参数注意(BR-NPA)策略,该策略捕获了与任务相关的人类解剖信息。目标模型首先要蒸馏以具有高分辨率中间特征图。然后,根据本地成对特征相似性将代表性特征分组,以产生更精确的,更精确的注意力图,突出显示输入的任务相关部分。获得的注意图根据化合物特征的活性水平进行对,该功能提供了有关突出显示区域的重要水平的信息。提出的模型可以很容易地在涉及分类的各种现代深层模型中进行调整。与最先进的注意力模型和可视化方法相比,广泛的定量和定性实验显示了更全面和准确的视觉解释,以及跨多个任务的可视化方法,包括细粒度的图像分类,很少的射击分类和人重新识别,而无需损害该方法分类精度。提出的可视化模型急切地阐明了神经网络如何在不同任务中以不同的方式“注意他们的注意力”。
translated by 谷歌翻译
可解释的机器学习提供了有关哪些因素推动了黑盒系统的一定预测以及是否信任高风险决策或大规模部署的洞察力。现有方法主要集中于选择解释性输入功能,这些功能遵循本地添加剂或实例方法。加性模型使用启发式采样扰动来依次学习实例特定解释器。因此,该过程效率低下,并且容易受到条件较差的样品的影响。同时,实例技术直接学习本地采样分布,并可以从其他输入中利用全球信息。但是,由于严格依赖预定义的功能,他们只能解释单一级预测并在不同设置上遇到不一致的情况。这项工作利用了这两种方法的优势,并提出了一个全球框架,用于同时学习多个目标类别的本地解释。我们还提出了一种自适应推理策略,以确定特定实例的最佳功能数量。我们的模型解释器极大地超过了忠诚的添加和实例的对应物,而在各种数据集和Black-box模型体系结构上获得了高水平的简洁性。
translated by 谷歌翻译
我们提出了一种可解释的关系提取方法,通过共同训练这两个目标来减轻概括和解释性之间的张力。我们的方法使用多任务学习体系结构,该体系结构共同训练分类器以进行关系提取,并在解释关系分类器的决策的关系中标记单词的序列模型。我们还将模型输出转换为规则,以将全局解释带入这种方法。使用混合策略对此序列模型进行训练:有监督,当可获得预先存在的模式的监督时,另外还要半监督。在后一种情况下,我们将序列模型的标签视为潜在变量,并学习最大化关系分类器性能的最佳分配。我们评估了两个数据集中的提议方法,并表明序列模型提供了标签,可作为关系分类器决策的准确解释,并且重要的是,联合培训通常可以改善关系分类器的性能。我们还评估了生成的规则的性能,并表明新规则是手动规则的重要附加功能,并使基于规则的系统更接近神经模型。
translated by 谷歌翻译
在尝试“解释”机器学习模型的预测中,研究人员提出了数百种技术,以归因于认为重要的功能的预测。虽然这些归属常常被声称持有改善人类“了解”模型的潜力,但令人惊讶地小的工作明确评估了对这种愿望的进步。在本文中,我们进行了一个众群研究,参与者与欺骗检测模型进行互动,以区分真实和假酒店评论。他们受到模拟新鲜评论模型的挑战,并以降低最初预测的类的概率的目标。成功的操纵将导致对抗性示例。在培训(但不是测试)阶段,突出显示输入跨度以传达Parience。通过我们的评估,我们观察到,对于线性袋式模型,与无解释控制相比,可以在训练期间访问特征系数的参与者能够在测试阶段中更大减少模型置信度。对于基于BERT的分类器,流行的本地解释不会提高它们在无法解释案例上降低模型信心的能力。值得注意的是,当由培训的线性模型的(全局)归属的(全局)归属给出的解释以模仿BERT模型,人们可以有效地操纵模型。
translated by 谷歌翻译
注意机制主导着深层模型的解释性。它们在输入上产生概率分布,该输入被广泛认为是特征对重要指标。但是,在本文中,我们发现注意力解释中的一个关键局限性:识别特征影响的极性的弱点。这将是一种误导性 - 注意力较高的特征可能不会忠实地促进模型预测;相反,它们可以施加抑制作用。有了这一发现,我们反思了当前基于注意力的技术的解释性,例如Attentio $ \ odot $梯度和基于LRP的注意解释。我们首先提出了一种可操作的诊断方法(此后忠实违规测试),以衡量解释权重与影响极性之间的一致性。通过广泛的实验,我们表明大多数经过测试的解释方法出乎意料地受到违反忠诚问题的阻碍,尤其是原始关注。对影响违规问题的因素的经验分析进一步为采用注意模型中采用解释方法提供了有用的观察。
translated by 谷歌翻译
变形金刚已成为计算机视觉中的默认架构,但是了解驱动其预测的原因仍然是一个具有挑战性的问题。当前的解释方法依赖于注意值或输入梯度,但是这些方法对模型的依赖性有限。Shapley值在理论上提供了一种替代方案,但是它们的计算成本使它们对于大型高维模型不切实际。在这项工作中,我们旨在使Shapley价值观对视觉变压器(VIT)实用。为此,我们首先利用一种注意力掩盖方法来评估VIT的部分信息,然后我们开发了一种通过单独的,学习的解释器模型来生成Shapley价值解释的程序。我们的实验将沙普利值与许多基线方法(例如,注意推出,Gradcam,LRP)进行了比较,我们发现我们的方法提供了比任何现有的VIT方法更准确的解释。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
已知自然语言推断(NLI)模型从训练数据内的偏见和人工制品中学习,影响他们概括到其他看不见的数据集。现有的去偏置方法侧重于防止模型学习这些偏差,这可能导致限制模型和较低的性能。相反,我们调查教学模型如何将人类接近NLI任务,以便学习将更好地概括到以前看不见的特征。使用自然语言解释,我们监督模型的注意力,以鼓励更多地关注解释中存在的词语,显着提高模型性能。我们的实验表明,这种方法的分布式改进也伴随着分发的改进,监督模型从概括到其他NLI数据集的功能。该模型的分析表明,人类解释鼓励增加对重要词语的关注,在前提下的单词和较少关注标点符号和止扰言论的关注。
translated by 谷歌翻译
State-of-the-art machine translation evaluation metrics are based on black-box language models. Hence, recent works consider their explainability with the goals of better understandability for humans and better metric analysis, including failure cases. In contrast, we explicitly leverage explanations to boost the metrics' performance. In particular, we perceive explanations as word-level scores, which we convert, via power means, into sentence-level scores. We combine this sentence-level score with the original metric to obtain a better metric. Our extensive evaluation and analysis across 5 datasets, 5 metrics and 4 explainability techniques shows that some configurations reliably improve the original metrics' correlation with human judgment. On two held datasets for testing, we obtain improvements in 15/18 resp. 4/4 cases. The gains in Pearson correlation are up to 0.032 resp. 0.055. We make our code available.
translated by 谷歌翻译