采用注意机制的普遍性引起了人们对注意力分布的解释性的关注。尽管它提供了有关模型如何运行的见解,但由于对模型预测的解释仍然非常怀疑,但它利用了注意力。社区仍在寻求更容易解释的策略,以更好地识别最终决定最大的本地活跃地区。为了提高现有注意模型的解释性,我们提出了一种新型的双线性代表性非参数注意(BR-NPA)策略,该策略捕获了与任务相关的人类解剖信息。目标模型首先要蒸馏以具有高分辨率中间特征图。然后,根据本地成对特征相似性将代表性特征分组,以产生更精确的,更精确的注意力图,突出显示输入的任务相关部分。获得的注意图根据化合物特征的活性水平进行对,该功能提供了有关突出显示区域的重要水平的信息。提出的模型可以很容易地在涉及分类的各种现代深层模型中进行调整。与最先进的注意力模型和可视化方法相比,广泛的定量和定性实验显示了更全面和准确的视觉解释,以及跨多个任务的可视化方法,包括细粒度的图像分类,很少的射击分类和人重新识别,而无需损害该方法分类精度。提出的可视化模型急切地阐明了神经网络如何在不同任务中以不同的方式“注意他们的注意力”。
translated by 谷歌翻译
人类参加,过程和分类给定图像的方式有可能使深层学习模型的性能大大效益。利用人类聚焦的地方可以在偏离基本特征时纠正模型以获得正确的决策。为了验证人类注意力包含诸如细粒度分类等决策过程的有价值的信息,我们可以比较人类注意和模型解释在发现重要特征方面。为了实现这一目标,我们为细粒度分类数据集幼崽收集人的凝视数据,并建立一个名为CUB-GHA的数据集(基于凝视的人类注意)。此外,我们提出了凝视增强培训(GAT)和知识融合网络(KFN),将人类凝视知识整合到分类模型中。我们在Cub-Gha和最近发布的医疗数据集CXR眼中实施了我们的胸部X射线图像的建议,包括从放射科医师收集的凝视数据。我们的结果表明,整合人类注意知识有效效益,有效地进行分类,例如,在CXR上改善基线4.38%。因此,我们的工作不仅提供了在细粒度分类中了解人类注意的有价值的见解,而且还有助于将人类凝视与计算机视觉任务集成的未来研究。 CUB-GHA和代码可在https://github.com/yaorong0921/cub -gha获得。
translated by 谷歌翻译
在本文中,我们基于任何卷积神经网络中中间注意图的弱监督生成机制,并更加直接地披露了注意模块的有效性,以充分利用其潜力。鉴于现有的神经网络配备了任意注意模块,我们介绍了一个元评论家网络,以评估主网络中注意力图的质量。由于我们设计的奖励的离散性,提出的学习方法是在强化学习环境中安排的,在此设置中,注意力参与者和经常性的批评家交替优化,以提供临时注意力表示的即时批评和修订,因此,由于深度强化的注意力学习而引起了人们的关注。 (Dreal)。它可以普遍应用于具有不同类型的注意模块的网络体系结构,并通过最大程度地提高每个单独注意模块产生的最终识别性能的相对增益来促进其表现能力,如类别和实例识别基准的广泛实验所证明的那样。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
Different from the general visual classification, some classification tasks are more challenging as they need the professional categories of the images. In the paper, we call them expert-level classification. Previous fine-grained vision classification (FGVC) has made many efforts on some of its specific sub-tasks. However, they are difficult to expand to the general cases which rely on the comprehensive analysis of part-global correlation and the hierarchical features interaction. In this paper, we propose Expert Network (ExpNet) to address the unique challenges of expert-level classification through a unified network. In ExpNet, we hierarchically decouple the part and context features and individually process them using a novel attentive mechanism, called Gaze-Shift. In each stage, Gaze-Shift produces a focal-part feature for the subsequent abstraction and memorizes a context-related embedding. Then we fuse the final focal embedding with all memorized context-related embedding to make the prediction. Such an architecture realizes the dual-track processing of partial and global information and hierarchical feature interactions. We conduct the experiments over three representative expert-level classification tasks: FGVC, disease classification, and artwork attributes classification. In these experiments, superior performance of our ExpNet is observed comparing to the state-of-the-arts in a wide range of fields, indicating the effectiveness and generalization of our ExpNet. The code will be made publicly available.
translated by 谷歌翻译
细粒度视觉识别的挑战通常在于发现关键的歧视区域。虽然可以从大规模标记的数据集中自动识别此类区域,但是当仅提供少量注释时,类似的方法可能会降低效率。在低数据制度中,网络通常很难选择正确的区域以识别识别,并且倾向于从培训数据中过度拟合虚假的相关模式。为了解决这个问题,本文提出了一种自我提升的注意机制,这是一种新颖的方法,可以使网络正规化关注跨样本和类共享的关键区域。具体而言,提出的方法首先为每个训练图像生成一个注意图,突出显示用于识别地面真实对象类别的判别零件。然后将生成的注意图用作伪通量。该网络被执行以适合它们作为辅助任务。我们将这种方法称为自我增强注意机制(SAM)。我们还通过使用SAM创建多个注意地图来开发一个变体,以泳池卷积图的样式,以双线性合并,称为SAM双线性。通过广泛的实验研究,我们表明两种方法都可以显着提高低数据状态上的细粒度视觉识别性能,并可以纳入现有的网络体系结构中。源代码可公开可用:https://github.com/ganperf/sam
translated by 谷歌翻译
很少有细粒度的分类和人搜索作为独特的任务和文学作品,已经分别对待了它们。但是,仔细观察揭示了重要的相似之处:这两个任务的目标类别只能由特定的对象细节歧视;相关模型应概括为新类别,而在培训期间看不到。我们提出了一个适用于这两个任务的新型统一查询引导网络(QGN)。QGN由一个查询引导的暹罗引文和兴奋子网组成,该子网还重新进行了所有网络层的查询和画廊功能,一个查询实习的区域建议特定于特定于特定的本地化以及查询指导的相似性子网络子网本网络用于公制学习。QGN在最近的一些少数细颗粒数据集上有所改善,在幼崽上的其他技术优于大幅度。QGN还对人搜索Cuhk-Sysu和PRW数据集进行了竞争性执行,我们在其中进行了深入的分析。
translated by 谷歌翻译
细粒度的图像识别是具有挑战性的,因为鉴别性线索通常是碎片化的,无论是来自单个图像还是多个图像。尽管有重要的改进,但大多数现有方法仍然专注于从单个图像中的最辨别部分,忽略其他地区的信息细节,缺乏从其他相关图像的线索考虑。在本文中,我们从新的角度分析了微粒图像识别的困难,并提出了一种具有峰值抑制模块和知识引导模块的变压器架构,其尊重单个图像中辨别特征的多样化和鉴别线索的聚合在多个图像中。具体地,峰值抑制模块首先利用线性投影来将输入图像转换为顺序令牌。然后,它基于变压器编码器产生的注意响应来阻止令牌。该模块因特征学习过程中的最辨别部分而受到惩罚,因此,提高了忽视区域的信息利用。知识引导模块将从峰值抑制模块生成的基于图像的表示与被学习的知识嵌入集进行比较,以获得知识响应系数。之后,使用响应系数作为分类分数,将知识学习形式形式化为分类问题。在训练期间更新知识嵌入和基于图像的表示,以便知识嵌入包括不同图像的鉴别线索。最后,我们将所获得的知识嵌入纳入基于形象的表示,作为全面的表示,导致性能显着提高。对六个流行数据集的广泛评估证明了所提出的方法的优势。
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
人重新识别(Reid)旨在从不同摄像机捕获的图像中检索一个人。对于基于深度学习的REID方法,已经证明,使用本地特征与人物图像的全局特征可以帮助为人员检索提供强大的特征表示。人类的姿势信息可以提供人体骨架的位置,有效地指导网络在这些关键领域更加关注这些关键领域,也可能有助于减少来自背景或闭塞的噪音分散。然而,先前与姿势相关的作品提出的方法可能无法充分利用姿势信息的好处,并没有考虑不同当地特征的不同贡献。在本文中,我们提出了一种姿势引导图注意网络,一个多分支架构,包括一个用于全局特征的一个分支,一个用于中粒体特征的一个分支,一个分支用于细粒度关键点特征。我们使用预先训练的姿势估计器来生成本地特征学习的关键点热图,并仔细设计图表卷积层以通过建模相似关系来重新评估提取的本地特征的贡献权重。实验结果表明我们对歧视特征学习的方法的有效性,我们表明我们的模型在几个主流评估数据集上实现了最先进的表演。我们还对我们的网络进行了大量的消融研究和设计不同类型的比较实验,以证明其有效性和鲁棒性,包括整体数据集,部分数据集,遮挡数据集和跨域测试。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
在过去的几年中,基于深度卷积神经网络(CNN)的图像识别已取得了重大进展。这主要是由于此类网络在挖掘判别对象姿势以及质地和形状的零件信息方面具有强大的能力。这通常不适合细粒度的视觉分类(FGVC),因为它由于阻塞,变形,照明等而表现出较高的类内和较低的阶层差异。表征对象/场景。为此,我们提出了一种方法,该方法可以通过汇总大多数相关图像区域的上下文感知特征及其在区分细颗粒类别中避免边界框和/或可区分的零件注释中的重要性来有效捕获细微的变化。我们的方法的灵感来自最新的自我注意力和图形神经网络(GNNS)方法的启发端到端的学习过程。我们的模型在八个基准数据集上进行了评估,该数据集由细粒对象和人类对象相互作用组成。它的表现优于最先进的方法,其识别准确性很大。
translated by 谷歌翻译
由于深度学习模型的黑盒性质,最近有针对CNN的视觉解释的解决方案的开发。鉴于用户研究的高成本,必须进行比较和评估这些不同方法的指标。在本文中,我们严格分析了Petsiuk等人提出的曲线(IAUC)指标下曲线(DAUC)和插入区域下的缺失区域。 (2018)。这些指标旨在评估通过Grad-CAM或Rise等通用方法产生的显着图的忠诚。首先,我们表明,由于仅考虑了分数的排名,因此忽略了显着性图的实际显着性分数值。这表明这些指标本身不足,因为显着图的视觉外观可能会发生很大变化,而无需修改分数的排名。其次,我们认为在DAUC和IAUC的计算过程中,该模型被呈现出来自训练分布的图像,这些图像可能导致所解释的模型的不可靠行为。为了补充DAUC/IAUC,我们提出了量化解释方法的稀疏性和校准的新指标,这是两个以前未研究的特性。最后,我们对本文研究的指标进行了一般性评论,并讨论了如何在用户研究中评估它们。
translated by 谷歌翻译
可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。这种目标编码方案对于模型间相关性的灵活性较小,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新颖的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些级别中心的阶层内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最先进的性能以及针对稀疏和不平衡数据的出色鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。
translated by 谷歌翻译
自我监督的视觉学习彻底改变了深度学习,成为域中的下一个重大挑战,并通过大型计算机视觉基准的监督方法迅速缩小了差距。随着当前的模型和培训数据成倍增长,解释和理解这些模型变得关键。我们研究了视力任务的自我监督学习领域中可解释的人工智能的问题,并提出了了解经过自学训练的网络及其内部工作的方法。鉴于自我监督的视觉借口任务的巨大多样性,我们缩小了对理解范式的关注,这些范式从同一图像的两种观点中学习,主要是旨在了解借口任务。我们的工作重点是解释相似性学习,并且很容易扩展到所有其他借口任务。我们研究了两个流行的自我监督视觉模型:Simclr和Barlow Twins。我们总共开发了六种可视化和理解这些模型的方法:基于扰动的方法(条件闭塞,上下文无形的条件闭塞和成对的闭塞),相互作用-CAM,特征可视化,模型差异可视化,平均变换和像素无形。最后,我们通过将涉及单个图像的监督图像分类系统量身定制的众所周知的评估指标来评估这些解释,并将其涉及两个图像的自我监督学习领域。代码为:https://github.com/fawazsammani/xai-ssl
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
在本文中,我们提出了Primatul,这是一种用于从细粒识别中使用的数据集的零件检测器无监督学习的新型算法。它利用了训练集中所有图像的宏观相似性,以便在预先训练的卷积神经网络的特征空间中进行重复的模式。我们提出了实施检测部件的局部性和统一性的新目标功能。此外,我们根据相关评分将检测器嵌入置信度度量,从而允许系统估计每个部分的可见性。我们将我们的方法应用于两个公共细粒数据集(Caltech-UCSD Bird 200和Stanford Cars),并表明我们的探测器可以一致地突出物体的一部分,同时很好地衡量了对其预测的信心。我们还证明,这些探测器可直接用于构建基于零件的细粒分类器,这些分类器在基于原型的方法的透明度与非解剖方法的性能之间提供了良好的折衷。
translated by 谷歌翻译