为了识别动态网络中嵌入的系统(模块),必须制定一个多输入估计问题,该问题需要测量某些节点并将其作为预测输入。但是,由于传感器选择和放置问题,在许多实际情况下,其中一些节点可能无法测量。这可能会导致目标模块的偏差估计。此外,与多输入结构相关的识别问题可能需要确定实验者不特别感兴趣的大量参数,并且在大型网络中的计算复杂性增加。在本文中,我们通过使用数据增强策略来解决这些问题,该策略使我们能够重建缺失的节点测量并提高估计目标模块的准确性。为此,我们使用基于正规化的基于内核的方法和近似推理方法开发了系统识别方法。为感兴趣的模块保留一个参数模型,我们将其他模块作为高斯过程(GP)建模,并用所谓的稳定样条核给出的内核。经验贝叶斯(EB)方法用于估计目标模块的参数。相关的优化问题是使用预期最大化(EM)方法来解决的,在该方法中,我们采用马尔可夫链蒙特卡洛(MCMC)技术来重建未知的缺失节点信息和网络动力学。动态网络示例上的数值模拟说明了开发方法的电势。
translated by 谷歌翻译
动态网络的识别方法通常需要先前的网络和干扰拓扑的知识,并且通常依赖于解决可扩展的不可达到的非凸优化问题。虽然在文献中可获得用于估计网络拓扑的方法,但是估计干扰拓扑的缺少的注意力不太注意,即扰动信号的过滤的白噪声表示中的(空间)噪声相关结构和噪声等级。在这项工作中,我们提出了一种动态网络的识别方法,其中干扰拓扑的估计在具有已知网络拓扑的全动态网络的识别之前。为此,我们扩展了多步顺序线性回归和加权空隙空间拟合方法来处理降低的排名噪声,并使用这些方法在完全测量情况下估计干扰拓扑和网络动态。结果,我们提供了一种具有并行计算能力的多步骤最小二乘算法,并且仅依赖于显式分析解决方案,从而避免涉及通常的非凸的优化。因此,我们始终如一地估算了箱子詹金斯模型结构的动态网络,同时保持计算负担低。我们提供了一种一致性证据,包括基于路径的数据信息性条件,用于在实验设计中分配激励信号。在具有减少的排名噪声的动态网络上执行的数值模拟清楚地说明了这种方法的潜力。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
我们考虑识别大规模线性和稳定的动态系统,其输出可能是许多相关输入的结果。因此,严重的疾病可能会影响估计问题。当通过许多子单元的互连给出的复杂物理系统进行建模时,这种情况通常是一种情况,在这些子单元的互连中可以遇到反馈和代数循环。我们制定了一种基于贝叶斯正则化的策略,其中任何脉冲响应都被建模为实现零均值高斯过程的策略。稳定的样条协方差用于包括有关脉冲反应的平滑指数衰减的信息。然后,我们设计了一种新的马尔可夫链蒙特卡洛方案,该方案涉及共线性,并能够有效地重建冲动反应的后部。它基于Gibbs采样的变化,该变体基于影响不同输入的截然性水平更新参数空间的重叠块。包括数值实验以测试数百个脉冲响应形成系统的方法的好处,并且输入相关性可能非常高。
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
具有伽马超高提升的分层模型提供了一个灵活,稀疏的促销框架,用于桥接$ l ^ 1 $和$ l ^ 2 $ scalalizations在贝叶斯的配方中致正问题。尽管对这些模型具有贝叶斯动机,但现有的方法仅限于\ Textit {最大后验}估计。尚未实现执行不确定性量化的可能性。本文介绍了伽马超高图的分层逆问题的变分迭代交替方案。所提出的变分推理方法产生精确的重建,提供有意义的不确定性量化,易于实施。此外,它自然地引入了用于选择超参数的模型选择。我们说明了我们在几个计算的示例中的方法的性能,包括从时间序列数据的动态系统的解卷积问题和稀疏识别。
translated by 谷歌翻译
Multivariate Hawkes processes are temporal point processes extensively applied to model event data with dependence on past occurrences and interaction phenomena. In the generalised nonlinear model, positive and negative interactions between the components of the process are allowed, therefore accounting for so-called excitation and inhibition effects. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is often a computationally expensive task, all the more with Bayesian estimation methods. In general, the posterior distribution in the nonlinear Hawkes model is non-conjugate and doubly intractable. Moreover, existing Monte-Carlo Markov Chain methods are often slow and not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we unify existing variational Bayes inference approaches under a general framework, that we theoretically analyse under easily verifiable conditions on the prior, the variational class, and the model. We notably apply our theory to a novel spike-and-slab variational class, that can induce sparsity through the connectivity graph parameter of the multivariate Hawkes model. Then, in the context of the popular sigmoid Hawkes model, we leverage existing data augmentation technique and design adaptive and sparsity-inducing mean-field variational methods. In particular, we propose a two-step algorithm based on a thresholding heuristic to select the graph parameter. Through an extensive set of numerical simulations, we demonstrate that our approach enjoys several benefits: it is computationally efficient, can reduce the dimensionality of the problem by selecting the graph parameter, and is able to adapt to the smoothness of the underlying parameter.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
我们提出了一种新的非参数混合物模型,用于多变量回归问题,灵感来自概率K-Nearthimest邻居算法。使用有条件指定的模型,对样本外输入的预测基于与每个观察到的数据点的相似性,从而产生高斯混合物表示的预测分布。在混合物组件的参数以及距离度量标准的参数上,使用平均场变化贝叶斯算法进行后推断,并具有基于随机梯度的优化过程。在与数据大小相比,输入 - 输出关系很复杂,预测分布可能偏向或多模式的情况下,输入相对较高的尺寸,该方法尤其有利。对五个数据集进行的计算研究,其中两个是合成生成的,这说明了我们的高维输入的专家混合物方法的明显优势,在验证指标和视觉检查方面都优于竞争者模型。
translated by 谷歌翻译
从卫星图像中提取的大气运动向量(AMV)是唯一具有良好全球覆盖范围的风观测。它们是进食数值天气预测(NWP)模型的重要特征。已经提出了几种贝叶斯模型来估计AMV。尽管对于正确同化NWP模型至关重要,但很少有方法可以彻底表征估计误差。估计误差的困难源于后验分布的特异性,这既是很高的维度,又是由于奇异的可能性而导致高度不良的条件,这在缺少数据(未观察到的像素)的情况下特别重要。这项工作研究了使用基于梯度的Markov链Monte Carlo(MCMC)算法评估AMV的预期误差。我们的主要贡献是提出一种回火策略,这相当于在点估计值附近的AMV和图像变量的联合后验分布的局部近似。此外,我们提供了与先前家庭本身有关的协方差(分数布朗运动),并具有不同的超参数。从理论的角度来看,我们表明,在规律性假设下,随着温度降低到{optimal}高斯近似值,在最大a后验(MAP)对数密度给出的点估计下,温度降低到{optimal}高斯近似值。从经验的角度来看,我们根据一些定量的贝叶斯评估标准评估了提出的方法。我们对合成和真实气象数据进行的数值模拟揭示了AMV点估计的准确性及其相关的预期误差估计值的显着提高,但在MCMC算法的收敛速度方面也有很大的加速度。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
translated by 谷歌翻译
我们提出了一种使用边缘似然的分布式贝叶斯模型选择的一般方法,其中数据集被分开在非重叠子集中。这些子集仅由个别工人本地访问,工人之间没有共享数据。我们近似通过在每个子集的每个子集上从后部采样通过Monte Carlo采样的完整数据的模型证据。结果使用一种新的方法来组合,该方法校正使用所产生的样本的汇总统计分裂。我们的鸿沟和征服方法使贝叶斯模型在大型数据设置中选择,利用所有可用信息,而是限制工人之间的沟通。我们派生了理论误差界限,这些错误界限量化了计算增益与精度损失之间的结果。当我们的真实世界实验所示,令人尴尬的平行性质在大规模数据集时产生了重要的速度。此外,我们展示了如何在可逆跳转设置中扩展建议的方法以在可逆跳转设置中进行模型选择,该跳转设置在一个运行中探讨多个特征组合。
translated by 谷歌翻译
网络推断已在系统生物学和社会科学等多个领域进行了广泛的研究。学习网络拓扑和内部动力学对于了解复杂系统的机制至关重要。特别是,稀疏拓扑和稳定的动态是许多现实世界连续时间(CT)网络的基本特征。鉴于通常只有一组节点能够观察到,在本文中,我们认为线性CT系统可以描绘网络,因为它们可以通过传输函数对未测量的节点进行建模。另外,测量值往往很嘈杂,并且采样频率较低和不同。因此,我们考虑CT模型,因为离散的时间近似通常需要细粒度的测量和均匀的采样步骤。开发的方法应用了源自线性随机微分方程(SDE)的动力结构函数(DSF)来描述测量节点的网络。一种数值抽样方法,即预处理的曲柄 - 尼科尔森(PCN),用于完善粗粒轨迹以提高推理精度。开发方法的收敛属性对数据源的维度具有鲁棒性。蒙特卡洛模拟表明,开发的方法优于最先进的方法,包括稀疏贝叶斯学习(GSBL),宾果游戏,基于内核的方法,dyngenie3,genie3和arni。模拟包括随机和环网,以及合成生物网络。这些是具有挑战性的网络,表明可以在广泛的环境中应用开发的方法,例如基因调节网络,社交网络和通信系统。
translated by 谷歌翻译
我们考虑在自适应环境中的时间序列预测问题。我们专注于未知和潜在的时变噪声差异下的状态空间模型的推动。我们介绍了一个增强模型,其中差异在跟踪模式下表示为辅助高斯潜变量。随着差异是非负面的,选择转换并应用于这些潜在的变量。推断依赖于在线变分贝叶斯方法,这包括在每次步骤中最小化kullback-leibler发散。我们观察到Kallback-Leibler发散的最小值是卡尔曼滤波器的扩展,以考虑到方差不确定性。我们使用这些最佳递归更新设计一种名为Viking的新颖算法。对于辅助潜变量,我们使用的二阶界限,其最佳录取封闭式解决方案。合成数据的实验表明,Viking的表现良好,并且对拼盘进行了强大。
translated by 谷歌翻译
本文介绍了使用基于补丁的先前分布的图像恢复的新期望传播(EP)框架。虽然Monte Carlo技术典型地用于从难以处理的后分布中进行采样,但它们可以在诸如图像恢复之类的高维推论问题中遭受可扩展性问题。为了解决这个问题,这里使用EP来使用多元高斯密度的产品近似后分布。此外,对这些密度的协方差矩阵施加结构约束允许更大的可扩展性和分布式计算。虽然该方法自然适于处理添加剂高斯观察噪声,但它也可以扩展到非高斯噪声。用于高斯和泊松噪声的去噪,染色和去卷积问题进行的实验说明了这种柔性近似贝叶斯方法的潜在益处,以实现与采样技术相比降低的计算成本。
translated by 谷歌翻译
离散数据丰富,并且通常作为计数或圆形数据而出现。甚至对于线性回归模型,缀合格前沿和闭合形式的后部通常是不可用的,这需要近似诸如MCMC的后部推理。对于广泛的计数和圆形数据回归模型,我们介绍了能够闭合后部推理的共轭前沿。密钥后和预测功能可通过直接蒙特卡罗模拟来计算。至关重要的是,预测分布是离散的,以匹配数据的支持,并且可以在多个协变量中进行共同评估或模拟。这些工具广泛用途是线性回归,非线性模型,通过基础扩展,以及模型和变量选择。多种仿真研究表明计算,预测性建模和相对于现有替代方案的选择性的显着优势。
translated by 谷歌翻译