随着组合优化的机器学习领域,通过这种新的视角,传统问题重新敷设和重新进行了折叠。大多数文献中的绝大多数侧重于小的图形问题,而几个真实问题致力于大图。在这里,我们专注于两个这样的问题:影响估计,#p-coll counting问题,以及影响最大化,np-colly问题。我们开发Glie,一个图形神经网络(GNN),其固有地参数化影响估计的上限并在小模拟图上培训。实验表明,Glie为真正的图表提供了精确的影响,该估计比列车集大10倍。更重要的是,它可以用于对大大更大图的影响最大化,因为预测排名不受精度降低的影响。我们使用Glie制定一个Cely Optimization,而不是模拟的影响估计,超越了影响最大化的基准,尽管具有计算开销。为了平衡时间复杂性和影响质量,我们提出了两种不同的方法。第一个是Q-Network,学会使用Glie的预测顺序选择种子。第二种基于Glie的表示在构建种子集的同时,基于Glie的表示来定义一个可怕的子模块功能。后者提供了时间效率和影响的最佳组合,表现优于SOTA基准。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
在社交网络中找到有影响力的用户是一个基本问题,具有许多可能的应用程序。将社交网络视为图形,可以通过位于网络中给定数量的跳数内的邻居的数量来测量一组用户的影响,其中每个跳标标记了影响扩散的步骤。在本文中,我们将IM的问题减少到预算受限的D-Hop主导集合问题(KDDSP)。我们提出了一个统一的机器学习(ML)框架,FastCover,通过以无人监督的方式学习高效的贪婪策略来解决KDDSP。作为框架的一个关键组成部分,我们设计了一种新颖的图形神经网络(GNN)架构,图反转关注网络(GRAT),其捕获邻居之间的扩散过程。与用于组合优化问题的大多数启发式算法和并发ML框架不同,FastCover确定从GNN的一个正向传播的节点的分数确定整个种子集,并且在图形大小中具有时间复杂性准线性。综合图和现实世界社交网络的实验表明,FastCover通过并发算法呈现的更好或相当的质量来找到解决方案,同时实现超过1000x的加速。
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
由于其在线社交网络上的广泛应用,影响力最大化(IM)在过去几十年中引起了广泛关注。当前的IM研究缺乏对种子如何产生影响效应的人类理解的解释,从而降低了现有解决方案的可信度,尽管它们适用。由于IM的复杂性,目前的大多数研究都集中在估计一阶扩散能力上,并且经常考虑从不同种子分散的流量之间的相互作用。这项研究使用SOBOL指数,这是基于方差的灵敏度分析的基石,可以分解对单个种子及其相互作用的影响效果。 SOBOL指数是针对IM上下文量身定制的,通过将种子选择作为二进制变量进行建模。这种说明方法普遍适用于所有网络类型,IM技术和扩散模型。基于解释方法,提出了一个称为Sobolim的一般框架,以通过过度选择节点,然后是消除策略来提高IM研究的性能。关于合成和现实世界图的实验表明,对影响效应的解释可以可靠地识别各种网络和IM方法之间种子之间的关键高阶相互作用。在经验上,Sobolim在有效性和效率上具有优势。
translated by 谷歌翻译
影响最大化是挖掘社交网络深入信息的关键问题,该信息旨在选择从网络中选择种子以最大程度地增加受影响的节点的数量。为了评估种子套装的影响,现有的努力提出了拟议的代理模型(转换),以较低的计算成本来代替昂贵的蒙特卡洛模拟过程。这些基于网络先验知识的替代转换从各个角度引起具有相似特征的不同搜索行为。对于特定情况,用户很难先验确定合适的转换。在本文中,我们提出了一个多种转化的进化框架,以进行影响最大化(MTEFIM),并保证了融合保证,以利用替代转换的潜在相似性和独特的优势,并避免用户手动确定最合适的转换。在MTEFIM中,将多个转换同时优化为多个任务。每个转换均分配一个进化求解器。进行了MTEFIM的三个主要组成部分:1)根据不同人群的个人(种子集)重叠程度估算转化之间的潜在关系,2)根据转变关系,将个体转移到跨种群中,3)选择最终输出种子集,包含所有代理模型知识。 MTEFIM的有效性在基准和现实世界社交网络上得到了验证。实验结果表明,与几种流行的IM特异性方法相比,MTEFIM可以有效地利用跨多个转换的潜在转移知识,以实现高度竞争性能。可以在https://github.com/xiaofangxd/mtefim上访问MTEFIM的实现。
translated by 谷歌翻译
在影响最大化(IM)的现实世界应用中,网络结构通常是未知的。因此,我们可以通过仅探索基础网络的一部分来确定最有影响力的种子节点,但对于节点查询的预算很小。由于收集节点元数据比通过查询节点调查节点之间的关系更具成本效益,我们提出了IM-Meta,这是一种端到端的解决方案,这是通过从查询和节点中检索信息的网络中IM的端到端解决方案元数据。但是,由于元数据的嘈杂性质和连通性推断的不确定性,使用这种元数据来帮助IM过程并非没有风险。为了应对这些挑战,我们制定了一个新的IM问题,旨在找到种子节点和查询节点。在IM-META中,我们开发了一种有效的方法,该方法可以迭代执行三个步骤:1)我们通过暹罗神经网络模型学习了收集的元数据和边缘之间的关系,2)我们选择了许多推断的自信边缘来构建增强的图形, 3)我们通过使用我们的拓扑感知的排名策略来最大程度地提高推断影响扩展,以确定查询的下一个节点。通过查询仅5%的节点,IM-META达到了上限性能的93%。
translated by 谷歌翻译
图形上的组合优化问题(COP)是优化的基本挑战。强化学习(RL)最近成为解决这些问题的新框架,并证明了令人鼓舞的结果。但是,大多数RL解决方案都采用贪婪的方式来逐步构建解决方案,因此不可避免地对动作序列构成不必要的依赖性,并且需要许多特定于问题的设计。我们提出了一个通用的RL框架,该框架不仅表现出最先进的经验表现,而且还推广到各种各样的警察。具体而言,我们将状态定义为解决问题实例的解决方案,并将操作作为对该解决方案的扰动。我们利用图形神经网络(GNN)为给定的问题实例提取潜在表示,然后应用深Q学习以获得通过翻转或交换顶点标签逐渐完善解决方案的策略。实验是在最大$ k $ cut和旅行推销员问题上进行的,并且针对一系列基于学习的启发式基线实现了绩效改善。
translated by 谷歌翻译
社交网络(SN)是一个由代表它们之间相互作用的群体组成的社会结构。 SNS最近被广泛使用,随后已成为产品推广和信息扩散的合适平台。 SN中的人们直接影响彼此的利益和行为。 SNS中最重要的问题之一是,如果选择将它们作为网络扩散场景的种子节点选择,那么他们可以以级联的方式对网络中的其他节点产生最大影响。有影响力的扩散器是人们,如果他们被选为网络中出版问题中的种子,那么该网络将拥有最多了解该扩散实体的人。这是称为影响最大化(IM)问题的文献中的一个众所周知的问题。尽管已证明这是一个NP完整的问题,并且在多项式时间内没有解决方案,但有人认为它具有子模块化功能的属性,因此可以使用贪婪的算法来解决。提出改善这种复杂性的大多数方法都是基于以下假设:整个图都是可见的。但是,此假设不适合许多真实世界图。进行了这项研究,以扩展使用链接预测技术与伪可见性图的电流最大化方法。为此,将一种称为指数随机图模型(ERGM)的图生成方法用于链接预测。使用斯坦福大学SNAP数据集的数据对所提出的方法进行了测试。根据实验测试,所提出的方法在现实世界图上有效。
translated by 谷歌翻译
我们考虑了最大化的影响(IM)问题:'如果我们能说服社交网络中的一部分个人采用新产品或创新,目的是触发大量的进一步收养级联我们应该定位吗?正式地,这是在社交网络中选择$ K $种子节点的任务,以使网络中预期的影响节点(在某些影响下传播模型)最大化。在文献中已经广泛研究了这个问题,并提出了几种解决方案方法。但是,大多数基于模拟的方法涉及耗时的蒙特卡洛模拟,以计算种子节点在整个网络中的影响。这限制了这些方法在大型社交网络上的适用性。在本文中,我们有兴趣以时间效率的方式解决影响最大化的问题。我们提出了一种社区意识的分歧和纠纷策略,涉及(i)学习社交网络的固有社区结构,(ii)通过解决每个社区的影响最大化问题,以及(iii)选择最终的影响力来生成候选解决方案。使用新颖的渐进预算计划来自候选解决方案的个人。我们提供有关现实世界社交网络的实验,表明所提出的算法在经验运行时和启发式算法方面优于基于仿真的算法。我们还研究了社区结构对算法性能的影响。我们的实验表明,具有较高模块化的社区结构导致所提出的算法在运行时和影响方面表现更好。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here. The two conference papers upon which this article is based (KDD 2003 and ICALP 2005) provide the first provable approximation guarantees for efficient algorithms. Using an The present article is an expanded version of two conference papers [51,52], which appeared in KDD 2003 and ICALP 2005, respectively.
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
在线影响最大化旨在通过选择一些种子节点,最大程度地利用未知网络模型的社交网络中内容的影响。最近的研究遵循非自适应设置,在扩散过程开始之前选择种子节点,并且在扩散停止时更新网络参数。我们考虑了与内容相关的在线影响最大化问题的自适应版本,其中种子节点是根据实时反馈依次激活的。在本文中,我们将问题提出为无限马在线性扩散过程中的折扣MDP,并提出了基于模型的增强学习解决方案。我们的算法维护网络模型估算,并适应种子用户,探索社交网络,同时乐观地改善最佳策略。我们建立了$ \ widetilde o(\ sqrt {t})$遗憾的算法。合成网络的经验评估证明了我们的算法效率。
translated by 谷歌翻译
图表神经网络(GNNS)在行业中,由于各种预测任务的表现令人印象深刻,在行业中获得了显着的采用。然而,单独的性能是不够的。任何广泛部署的机器学习算法都必须强大到对抗性攻击。在这项工作中,我们调查了GNN的这个方面,识别漏洞,并将它们链接到图形属性,可能导致更安全和强大的GNN的开发。具体而言,我们制定任务和模型不可知逃避攻击问题,其中对手修改了测试图以影响任何未知下游任务的性能。提出的算法,盛大($ GR $ APH $ A $ TTACK通过$ N $ eighbors $ D $ Istorration)显示节点邻域的失真在急剧损害预测性能方面是有效的。虽然邻里失真是一个NP难题,但是宏伟设计了通过具有深入$ Q $ -Learning的图形同构网络的新组合的启发式。关于实际数据集的广泛实验表明,平均而言,盛大的速度高达50美元,而不是最先进的技术,同时速度超过100美元。
translated by 谷歌翻译
我们提出了一个新的图形神经网络,我们称为AgentNet,该网络专为图形级任务而设计。 AgentNet的灵感来自子宫性算法,具有独立于图形大小的计算复杂性。代理Net的体系结构从根本上与已知图神经网络的体系结构不同。在AgentNet中,一些受过训练的\ textit {神经代理}智能地行走图,然后共同决定输出。我们提供了对AgentNet的广泛理论分析:我们表明,代理可以学会系统地探索其邻居,并且AgentNet可以区分某些甚至3-WL无法区分的结构。此外,AgentNet能够将任何两个图形分开,这些图在子图方面完全不同。我们通过在难以辨认的图和现实图形分类任务上进行合成实验来确认这些理论结果。在这两种情况下,我们不仅与标准GNN相比,而且与计算更昂贵的GNN扩展相比。
translated by 谷歌翻译
在处理大规模网络和关系数据时,降低图是基本的。它们可以通过在粗糙的结构中求解它们来缩小高度计算影响的尺寸。同时,图减少起着在图神经网络中合并层的作用,从结构中提取多分辨率表示。在这些情况下,还原机制保留距离关系和拓扑特性的能力似乎是基本的,以及可扩展性,使其能够应用于实际大小的问题。在本文中,我们基于最大重量$ k $独立的集合的图理论概念引入了图形粗化机制,从而提供了一种贪婪的算法,该算法允许在GPU上有效地并行实现。我们的方法是常规数据(图像,序列)中的第一个图形结构化对应物。我们证明了在路径长度上的失真界限的理论保证,以及在污垢图中保留关键拓扑特性的能力。我们利用这些概念来定义我们在图形分类任务中经验评估的图表合并机制,表明它与文献中的合并方法进行了比较。
translated by 谷歌翻译
使用机器学习来求解组合优化(CO)问题是具有挑战性的,尤其是当数据未标记时。这项工作为CO问题提供了无监督的学习框架。我们的框架遵循标准的放松加能方法,并采用神经网络来参数放松的解决方案,以便简单的后传播可以端到端训练模型。我们的关键贡献是,观察到,如果放松的目标满足入门凹度,那么低优化损失就可以保证最终积分解决方案的质量。该观察结果显着扩大了受ERDOS概率方法启发的先前框架的适用性。特别是,该观察结果可以指导目标模型的设计,在这些应用程序中未明确给出目标,同时需要在先验中进行建模。我们通过解决合成图优化问题以及两个现实世界应用程序来评估我们的框架,包括电路设计中的资源分配和近似计算。我们的框架在很大程度上优于基于Na \“ {i}的放松,增强学习和Gumbel-Softmax技巧的基线。
translated by 谷歌翻译