可变形的物体操纵在我们的日常生活中具有许多应用,例如烹饪和洗衣折叠。操纵弹性塑料对象(例如面团)特别具有挑战性,因为面团缺乏紧凑的状态表示,需要接触丰富的相互作用。我们考虑将面团从RGB-D图像中变成特定形状的任务。尽管该任务对于人类来说似乎是直观的,但对于诸如幼稚轨迹优化之类的常见方法,存在局部最佳选择。我们提出了一种新型的轨迹优化器,该优化器通过可区分的“重置”模块进行优化,将单阶段的固定定位轨迹转换为多阶段的多阶段多启动轨迹,其中所有阶段均已共同优化。然后,我们对轨迹优化器生成的演示进行训练闭环政策。我们的策略将部分点云作为输入,从而使从模拟到现实世界的转移易于转移。我们表明,我们的政策可以执行现实世界的面团操纵,将面团的球弄平到目标形状。
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
6D在杂乱的场景中抓住是机器人操纵中的长期存在。由于状态估计不准确,开环操作管道可能会失败,而大多数端到端的掌握方法尚未缩放到具有障碍物的复杂场景。在这项工作中,我们提出了一种新的杂乱场景掌握的最终学习方法。我们的分层框架基于部分点云观测学习无碰撞目标驱动的抓取性。我们学习嵌入空间来编码培训期间的专家掌握计划和一个变形式自动化器,以在测试时间上采样不同的抓握轨迹。此外,我们培训批评网络的计划选择和选项分类器,用于通过分层加强学习切换到实例掌握策略。我们评估我们的方法并与仿真中的几个基线进行比较,并证明我们的潜在规划可以概括为真实的杂乱场景掌握任务。我们的视频和代码可以在https://sites.google.com/view/latent-grasping中找到。
translated by 谷歌翻译
我们提出了一种从演示方法(LFD)方法的新颖学习,即示范(DMFD)的可变形操作,以使用状态或图像作为输入(给定的专家演示)来求解可变形的操纵任务。我们的方法以三种不同的方式使用演示,并平衡在线探索环境和使用专家的指导之间进行权衡的权衡,以有效地探索高维空间。我们在一组一维绳索的一组代表性操纵任务上测试DMFD,并从软件套件中的一套二维布和2维布进行测试,每个任务都带有状态和图像观测。对于基于状态的任务,我们的方法超过基线性能高达12.9%,在基于图像的任务上最多超过33.44%,具有可比或更好的随机性。此外,我们创建了两个具有挑战性的环境,用于使用基于图像的观测值折叠2D布,并为其设定性能基准。与仿真相比,我们在现实世界执行过程中归一化性能损失最小的真实机器人(约为6%),我们将DMFD部署为最小。源代码在github.com/uscresl/dmfd上
translated by 谷歌翻译
自我咬合对于布料操纵而具有挑战性,因为这使得很难估计布的全部状态。理想情况下,试图展开弄皱或折叠的布的机器人应该能够对布的遮挡区域进行推理。我们利用姿势估计的最新进展来构建一种使用明确的遮挡推理来展开皱巴布的系统的系统。具体来说,我们首先学习一个模型来重建布的网格。但是,由于布构型的复杂性以及遮挡的歧义,该模型可能会出现错误。我们的主要见解是,我们可以通过进行自我监督的损失进行测试时间填充来进一步完善预测的重建。获得的重建网格使我们能够在推理遮挡的同时使用基于网格的动力学模型来计划。我们在布料上和布料规范化上评估了系统,其目的是将布操作成典型的姿势。我们的实验表明,我们的方法显着优于未明确解释闭塞或执行测试时间优化的先验方法。可以在我们的$ \ href {https://sites.google.com/view/occlusion-reason/home/home} {\ text {project {project {project}}}上找到视频和可视化。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
虽然对理解计算机视觉中的手对象交互进行了重大进展,但机器人执行复杂的灵巧操纵仍然非常具有挑战性。在本文中,我们提出了一种新的平台和管道DEXMV(来自视频的Dexerous操纵)以进行模仿学习。我们设计了一个平台:(i)具有多指机器人手和(ii)计算机视觉系统的复杂灵巧操纵任务的仿真系统,以记录进行相同任务的人类手的大规模示范。在我们的小说管道中,我们从视频中提取3D手和对象姿势,并提出了一种新颖的演示翻译方法,将人类运动转换为机器人示范。然后,我们将多个仿制学习算法与演示进行应用。我们表明,示威活动确实可以通过大幅度提高机器人学习,并解决独自增强学习无法解决的复杂任务。具有视频的项目页面:https://yzqin.github.io/dexmv
translated by 谷歌翻译
由于配置空间的高维度以及受各种材料特性影响的动力学的复杂性,布料操纵是一项具有挑战性的任务。复杂动力学的效果甚至在动态折叠中更为明显,例如,当平方板通过单个操纵器将一块织物折叠为两种时。为了说明复杂性和不确定性,使用例如通常需要视觉。但是,构建动态布折叠的视觉反馈政策是一个开放的问题。在本文中,我们提出了一种解决方案,该解决方案可以使用强化学习(RL)学习模拟政策,并将学识渊博的政策直接转移到现实世界中。此外,要学习一种操纵多种材料的单一策略,我们将模拟中的材料属性随机化。我们评估了现实世界实验中视觉反馈和材料随机化的贡献。实验结果表明,所提出的解决方案可以使用现实世界中的动态操作成功地折叠不同的面料类型。代码,数据和视频可从https://sites.google.com/view/dynamic-cloth-folding获得
translated by 谷歌翻译
Robot learning provides a number of ways to teach robots simple skills, such as grasping. However, these skills are usually trained in open, clutter-free environments, and therefore would likely cause undesirable collisions in more complex, cluttered environments. In this work, we introduce an affordance model based on a graph representation of an environment, which is optimised during deployment to find suitable robot configurations to start a skill from, such that the skill can be executed without any collisions. We demonstrate that our method can generalise a priori acquired skills to previously unseen cluttered and constrained environments, in simulation and in the real world, for both a grasping and a placing task.
translated by 谷歌翻译
动态状态表示学习是机器人学习中的重要任务。可以捕获动力学信息的潜在空间在加速模型的自由强化学习,缩小模拟到现实差距以及降低运动计划的复杂性等领域中具有广泛的应用。但是,当前的动态状态表示方法在复杂的动态系统(例如可变形对象)上的扩展很差,并且不能将良好定义的仿真函数直接嵌入到训练管道中。我们提出了DIFFSRL,这是一种动态状态表示学习管道,利用可区分的模拟可以将复杂的动力学模型嵌入到端到端训练的一部分。我们还将可区分的动态约束作为管道的一部分集成,这为潜在状态提供了意识到动态约束的激励措施。我们进一步建立了在软体体模拟系统PlastonElab上学习基准的国家表示基准,我们的模型在捕获长期动态和奖励预测方面表现出了卓越的性能。
translated by 谷歌翻译
在移动操作(MM)中,机器人可以在内部导航并与其环境进行交互,因此能够完成比仅能够导航或操纵的机器人的更多任务。在这项工作中,我们探讨如何应用模仿学习(IL)来学习MM任务的连续Visuo-Motor策略。许多事先工作表明,IL可以为操作或导航域训练Visuo-Motor策略,但很少有效应用IL到MM域。这样做是挑战的两个原因:在数据方面,当前的接口使得收集高质量的人类示范困难,在学习方面,有限数据培训的政策可能会在部署时遭受协变速转变。为了解决这些问题,我们首先提出了移动操作Roboturk(Momart),这是一种新颖的遥控框架,允许同时导航和操纵移动操纵器,并在现实的模拟厨房设置中收集一类大规模的大规模数据集。然后,我们提出了一个学习错误检测系统来解决通过检测代理处于潜在故障状态时的协变量转变。我们从该数据中培训表演者的IL政策和错误探测器,在专家数据培训时,在多个多级任务中达到超过45%的任务成功率和85%的错误检测成功率。 CodeBase,DataSets,Visualization,以及更多可用的https://sites.google.com/view/il-for-mm/home。
translated by 谷歌翻译
由于布料的复杂动态,缺乏低维状态表示和自闭合,机器人操纵布的机器人操纵对机器人来说仍然具有挑战性。与以前的基于模型的基于模型的方法形成对比,用于学习基于像素的动态模型或压缩潜伏的潜在载体动态,我们建议从部分点云观察中学习基于粒子的动力学模型。为了克服部分可观察性的挑战,我们推出在底层布料网上连接的可见点。然后,我们通过此可见连接图来学习动态模型。与以往的基于学习的方法相比,我们的模型与其基于粒子的表示具有强烈的感应偏差,用于学习底层布理物理学;它不变于视觉功能;并且预测可以更容易地可视化。我们表明我们的方法极大地优于以前的最先进的模型和无模型加强学习方法在模拟中。此外,我们展示了零拍摄的SIM-to-Real Transfer,在那里我们部署了在法兰卡臂上的模拟中培训的模型,并表明该模型可以从弄皱的配置中成功平滑不同类型的布料。视频可以在我们的项目网站上找到。
translated by 谷歌翻译
现有的模仿学习(IL)方法,例如逆增强学习(IRL)通常具有双环培训过程,在学习奖励功能和政策之间交替,并且倾向于遭受较长的训练时间和较高的差异。在这项工作中,我们确定了可区分物理模拟器的好处,并提出了一种新的IL方法,即通过可区分的物理学(ILD)模仿学习,从而摆脱了双环设计,并在最终性能,收敛速度,融合速度,融合速度,融合速度上取得了重大改善和稳定性。提出的ILD将可区分的物理模拟器作为物理学将其纳入其策略学习的计算图中。它通过从参数化策略中采样动作来展开动力学,只需最大程度地减少专家轨迹与代理轨迹之间的距离,并通过时间物理操作员将梯度回到策略中。有了物理学的先验,ILD政策不仅可以转移到看不见的环境规范中,而且可以在各种任务上产生更高的最终表现。此外,ILD自然形成了单环结构,从而显着提高了稳定性和训练速度。为了简化时间物理操作引起的复杂优化景观,ILD在优化过程中动态选择每个状态的学习目标。在我们的实验中,我们表明ILD在各种连续控制任务中都超过了最先进的方法,只需要一个专家演示。此外,ILD可以应用于具有挑战性的可变形对象操纵任务,并可以推广到看不见的配置。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
通过各种物体学习各种灵巧的操纵行为仍然是一个开放的巨大挑战。虽然政策学习方法为攻击此问题提供了强大的途径,但它们需要大量的每任务工程和算法调整。本文试图通过开发预先保证的灵巧操纵(PGDM)框架来逃避这些约束,从而在没有任何特定于任务的推理或超级参数调整的情况下会产生各种灵活的操纵行为。 PGD​​M的核心是一种众所周知的机器人构建体,即pre grasps(即用于对象相互作用的手工置序)。这种简单的原始性足以诱导有效的探索策略来获取复杂的灵巧操纵行为。为了详尽地验证这些主张,我们介绍了TCDM,这是根据多个对象和灵巧的操纵器定义的50个不同操纵任务的基准。 TCDM的任务是使用来自各种来源(动画师,人类行为等)的示例对象轨迹自动定义的,而无需任何执行任务工程和/或监督。我们的实验验证了PGDM的探索策略,该策略是由令人惊讶的简单成分(单个预抓姿势)引起的,与先前方法的性能相匹配,这些方法需要昂贵的每任意功能/奖励工程,专家监督和高参数调整。有关动画可视化,训练有素的策略和项目代码,请参阅:https://pregrasps.github.io/
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
在现实世界中的机器人在现实环境中的许多可能的应用领域都铰接机器人掌握物体的能力。因此,机器人Grasping多年来一直是有效的研究领域。通过我们的出版物,我们有助于使机器人能够掌握,特别关注垃圾桶采摘应用。垃圾拣选尤其挑战,由于经常杂乱和非结构化的物体排列以及通过简单的顶部掌握的物体的频繁避免的避神。为了解决这些挑战,我们提出了一种基于软演员 - 评论家(SAC)的混合离散调整的完全自我监督的强化学习方法。我们使用参数化运动原语来推动和抓握运动,以便为我们考虑的困难设置启用灵活的适应行为。此外,我们使用数据增强来提高样本效率。我们证明了我们提出的关于具有挑战性的采摘情景的方法,其中平面掌握学习或行动离散化方法会面临很大困难
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译