通过各种物体学习各种灵巧的操纵行为仍然是一个开放的巨大挑战。虽然政策学习方法为攻击此问题提供了强大的途径,但它们需要大量的每任务工程和算法调整。本文试图通过开发预先保证的灵巧操纵(PGDM)框架来逃避这些约束,从而在没有任何特定于任务的推理或超级参数调整的情况下会产生各种灵活的操纵行为。 PGD​​M的核心是一种众所周知的机器人构建体,即pre grasps(即用于对象相互作用的手工置序)。这种简单的原始性足以诱导有效的探索策略来获取复杂的灵巧操纵行为。为了详尽地验证这些主张,我们介绍了TCDM,这是根据多个对象和灵巧的操纵器定义的50个不同操纵任务的基准。 TCDM的任务是使用来自各种来源(动画师,人类行为等)的示例对象轨迹自动定义的,而无需任何执行任务工程和/或监督。我们的实验验证了PGDM的探索策略,该策略是由令人惊讶的简单成分(单个预抓姿势)引起的,与先前方法的性能相匹配,这些方法需要昂贵的每任意功能/奖励工程,专家监督和高参数调整。有关动画可视化,训练有素的策略和项目代码,请参阅:https://pregrasps.github.io/
translated by 谷歌翻译
我们研究机器人如何自主学习需要联合导航和抓握的技能。虽然原则上的加固学习提供自动机器人技能学习,但在实践中,在现实世界中的加固学习是挑战性的,并且往往需要大量的仪器和监督。我们的宗旨是以无论没有人为干预的自主方式,设计用于学习导航和操纵的机器人强化学习系统,在没有人为干预的情况下,在现实的假设下实现持续学习。我们建议的系统relmm,可以在没有任何环境仪器的现实世界平台上不断学习,没有人为干预,而无需访问特权信息,例如地图,对象位置或环境的全局视图。我们的方法采用模块化策略与组件进行操纵和导航,其中操纵政策不确定性驱动导航控制器的探索,操作模块为导航提供奖励。我们在房间清理任务上评估我们的方法,机器人必须导航到并拾取散落在地板上的物品。在掌握课程训练阶段之后,relmm可以在自动真实培训的大约40小时内自动学习导航并完全抓住。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
在机器人技术中,以可扩展的方式构建各种操纵技巧的曲目仍然是一个未解决的挑战。解决这一挑战的一种方法是在非结构化的人类游戏中,人类在环境中自由运作以实现未指定的目标。游戏是一种简单且廉价的方法,用于收集各种用户演示,并在环境中进行广泛的状态和目标覆盖。由于这种不同的覆盖范围,现有的从游戏中学习的方法对离线数据分布的在线政策偏差更加牢固。但是,这些方法通常很难在场景变化和具有挑战性的操纵基础上学习,部分原因是将复杂的行为与他们引起的场景变化联系起来。我们的见解是,以对象数据为中心的观点可以帮助将人类的行为和所产生的环境变化联系起来,从而改善多任务策略学习。在这项工作中,我们构建了一个潜在空间来建模对象\ textit {proffances} - 在环境中定义其用途的对象的属性,然后学习实现所需负担的策略。通过对可变范围任务进行建模和预测所需的负担,我们的方法通过以对象为中心的游戏(PLATO)预测潜在的负担,在2D和3D对象操纵模拟和现实世界环境中,在复杂的操纵任务上的现有方法优于现有方法互动。可以在我们的网站上找到视频:https://tinyurl.com/4U23HWFV
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
Dexterous manipulation with anthropomorphic robot hands remains a challenging problem in robotics because of the high-dimensional state and action spaces and complex contacts. Nevertheless, skillful closed-loop manipulation is required to enable humanoid robots to operate in unstructured real-world environments. Reinforcement learning (RL) has traditionally imposed enormous interaction data requirements for optimizing such complex control problems. We introduce a new framework that leverages recent advances in GPU-based simulation along with the strength of imitation learning in guiding policy search towards promising behaviors to make RL training feasible in these domains. To this end, we present an immersive virtual reality teleoperation interface designed for interactive human-like manipulation on contact rich tasks and a suite of manipulation environments inspired by tasks of daily living. Finally, we demonstrate the complementary strengths of massively parallel RL and imitation learning, yielding robust and natural behaviors. Videos of trained policies, our source code, and the collected demonstration datasets are available at https://maltemosbach.github.io/interactive_ human_like_manipulation/.
translated by 谷歌翻译
由于高尺寸致动空间,并且手指与物体之间的接触状态频繁变化,在手中对象重新定向是机器人的一个具有挑战性的问题。我们提出了一个简单的无模型框架,可以学习使用向上和向下的手重新定位对象。我们展示了在两种情况下重新定位2000年几何不同物体的能力。学习的政策在新对象上显示了强烈的零射传动性能。我们提供了证据表明,这些政策通过蒸馏它们在现实世界中轻松获得的观察来使用观察来实现现实世界的操作。学习政策的视频可用于:https://taochenshh.github.io/projects/in-hand -reorientation。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
Dexterous操作是机器人中的一个具有挑战性和重要问题。虽然数据驱动方法是一个有希望的方法,但由于流行方法的样本效率低,当前基准测试需要模拟或广泛的工程支持。我们为Trifinger系统提供基准,这是一个开源机器人平台,用于灵巧操纵和2020年真正的机器人挑战的重点。在挑战中取得成功的基准方法可以一般被描述为结构性政策,因为它们结合了经典机器人和现代政策优化的元素。这种诱导偏差的包含促进样品效率,可解释性,可靠性和高性能。该基准测试的关键方面是验证跨模拟和实际系统的基线,对每个解决方案的核心特征进行彻底消融研究,以及作为操纵基准的挑战的回顾性分析。本工作的代码和演示视频可以在我们的网站上找到(https://sites.google.com/view/benchmark-rrc)。
translated by 谷歌翻译
强化学习(RL)算法有望为机器人系统实现自主技能获取。但是,实际上,现实世界中的机器人RL通常需要耗时的数据收集和频繁的人类干预来重置环境。此外,当部署超出知识的设置超出其学习的设置时,使用RL学到的机器人政策通常会失败。在这项工作中,我们研究了如何通过从先前看到的任务中收集的各种离线数据集的有效利用来应对这些挑战。当面对一项新任务时,我们的系统会适应以前学习的技能,以快速学习执行新任务并将环境返回到初始状态,从而有效地执行自己的环境重置。我们的经验结果表明,将先前的数据纳入机器人增强学习中可以实现自主学习,从而大大提高了学习的样本效率,并可以更好地概括。
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Physical interactions can often help reveal information that is not readily apparent. For example, we may tug at a table leg to evaluate whether it is built well, or turn a water bottle upside down to check that it is watertight. We propose to train robots to acquire such interactive behaviors automatically, for the purpose of evaluating the result of an attempted robotic skill execution. These evaluations in turn serve as "interactive reward functions" (IRFs) for training reinforcement learning policies to perform the target skill, such as screwing the table leg tightly. In addition, even after task policies are fully trained, IRFs can serve as verification mechanisms that improve online task execution. For any given task, our IRFs can be conveniently trained using only examples of successful outcomes, and no further specification is needed to train the task policy thereafter. In our evaluations on door locking and weighted block stacking in simulation, and screw tightening on a real robot, IRFs enable large performance improvements, even outperforming baselines with access to demonstrations or carefully engineered rewards. Project website: https://sites.google.com/view/lirf-corl-2022/
translated by 谷歌翻译
我们通过在野外观看人类来解决学习问题。尽管在现实世界中学习的传统方法和强化学习对于学习是有希望的,但它们要么是效率低下的样本,要么被限制在实验室环境中。同时,处理被动的,非结构化的人类数据已经取得了很大的成功。我们建议通过有效的一声机器人学习算法解决此问题,该算法围绕第三人称的角度学习。我们称我们的方法旋转:野生人类模仿机器人学习。旋转对人类演示者的意图提取先前,并使用它来初始化代理商的策略。我们介绍了一种有效的现实世界政策学习方案,该方案可以使用交互作用进行改进。我们的主要贡献是一种简单的基于抽样的策略优化方法,这是一种对齐人和机器人视频的新型目标功能,以及一种提高样本效率的探索方法。我们在现实世界中展示了单一的概括和成功,其中包括野外的20个不同的操纵任务。视频并在https://human2robot.github.io上进行交谈
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译