我们提出了一种从演示方法(LFD)方法的新颖学习,即示范(DMFD)的可变形操作,以使用状态或图像作为输入(给定的专家演示)来求解可变形的操纵任务。我们的方法以三种不同的方式使用演示,并平衡在线探索环境和使用专家的指导之间进行权衡的权衡,以有效地探索高维空间。我们在一组一维绳索的一组代表性操纵任务上测试DMFD,并从软件套件中的一套二维布和2维布进行测试,每个任务都带有状态和图像观测。对于基于状态的任务,我们的方法超过基线性能高达12.9%,在基于图像的任务上最多超过33.44%,具有可比或更好的随机性。此外,我们创建了两个具有挑战性的环境,用于使用基于图像的观测值折叠2D布,并为其设定性能基准。与仿真相比,我们在现实世界执行过程中归一化性能损失最小的真实机器人(约为6%),我们将DMFD部署为最小。源代码在github.com/uscresl/dmfd上
translated by 谷歌翻译
由于在存在障碍物和高维视觉观测的情况下,由于在存在障碍和高维视觉观测的情况下,学习复杂的操纵任务是一个具有挑战性的问题。事先工作通过整合运动规划和强化学习来解决勘探问题。但是,运动计划程序增强策略需要访问状态信息,该信息通常在现实世界中不可用。为此,我们建议通过(1)视觉行为克隆以通过(1)视觉行为克隆来将基于国家的运动计划者增强策略,以删除运动计划员依赖以及其抖动运动,以及(2)基于视觉的增强学习来自行为克隆代理的平滑轨迹的指导。我们在阻塞环境中的三个操作任务中评估我们的方法,并将其与各种加固学习和模仿学习基线进行比较。结果表明,我们的框架是高度采样的和优于最先进的算法。此外,与域随机化相结合,我们的政策能够用零击转移到未经分散的人的未经环境环境。 https://clvrai.com/mopa-pd提供的代码和视频
translated by 谷歌翻译
模仿学习在有效地学习政策方面对复杂的决策问题有着巨大的希望。当前的最新算法经常使用逆增强学习(IRL),在给定一组专家演示的情况下,代理会替代奖励功能和相关的最佳策略。但是,这种IRL方法通常需要在复杂控制问题上进行实质性的在线互动。在这项工作中,我们提出了正规化的最佳运输(ROT),这是一种新的模仿学习算法,基于最佳基于最佳运输轨迹匹配的最新进展。我们的主要技术见解是,即使只有少量演示,即使只有少量演示,也可以自适应地将轨迹匹配的奖励与行为克隆相结合。我们对横跨DeepMind Control Suite,OpenAI Robotics和Meta-World基准的20个视觉控制任务进行的实验表明,与先前最新的方法相比,平均仿真达到了90%的专家绩效的速度,达到了90%的专家性能。 。在现实世界的机器人操作中,只有一次演示和一个小时的在线培训,ROT在14个任务中的平均成功率为90.1%。
translated by 谷歌翻译
近年来,深度加固学习(DRL)已经成功地进入了复杂的决策应用,例如机器人,自动驾驶或视频游戏。违规算法往往比其策略对应物更具样本效率,并且可以从存储在重放缓冲区中存储的任何违规数据中受益。专家演示是此类数据的流行来源:代理人接触到成功的国家和行动,可以加速学习过程并提高性能。在过去,已经提出了多种想法来充分利用缓冲区中的演示,例如仅在演示或最小化额外的成本函数的预先估算。我们继续进行研究,以孤立地评估这些想法中的几个想法,以了解哪一个具有最大的影响。我们还根据给予示范和成功集中的奖励奖金,为稀疏奖励任务提供了一种新的方法。首先,我们向来自示威活动的过渡提供奖励奖金,以鼓励代理商符合所证明的行为。然后,在收集成功的剧集时,我们将其在将其添加到重播缓冲区之前与相同的奖金转换,鼓励代理也与其先前的成功相匹配。我们的实验的基本算法是流行的软演员 - 评论家(SAC),用于连续动作空间的最先进的脱核算法。我们的实验专注于操纵机器人,特别是在模拟中的机器人手臂的3D到达任务。我们表明,我们的方法Sacr2根据奖励重新标记提高了此任务的性能,即使在没有示范的情况下也是如此。
translated by 谷歌翻译
无监督的表示学习的最新进展显着提高了模拟环境中培训强化学习政策的样本效率。但是,尚未看到针对实体强化学习的类似收益。在这项工作中,我们专注于从像素中启用数据有效的实体机器人学习。我们提出了有效的机器人学习(编码器)的对比前训练和数据增强,该方法利用数据增强和无监督的学习来从稀疏奖励中实现对实体ARM策略的样本效率培训。虽然对比预训练,数据增强,演示和强化学习不足以进行有效学习,但我们的主要贡献表明,这些不同技术的组合导致了一种简单而数据效率的方法。我们表明,只有10个示范,一个机器人手臂可以从像素中学习稀疏的奖励操纵策略,例如到达,拾取,移动,拉动大物体,翻转开关并在短短30分钟内打开抽屉现实世界训练时间。我们在项目网站上包括视频和代码:https://sites.google.com/view/felfficited-robotic-manipulation/home
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
近年来,深度加固学习(DRL)已经成功地进入了复杂的决策应用,例如机器人,自动驾驶或视频游戏。在寻找更多采样高效的算法中,有希望的方向是利用尽可能多的外部偏离策略数据。这种数据驱动方法的一个主题是从专家演示中学习。在过去,已经提出了多种想法来利用添加到重放缓冲区的示范,例如仅在演示中预先预订或最小化额外的成本函数。我们提出了一种新的方法,能够利用任何稀疏奖励环境中在线收集的演示和剧集,以任何违规算法在线。我们的方法基于奖励奖金,给出了示范和成功的剧集,鼓励专家模仿和自模仿。首先,我们向来自示威活动的过渡提供奖励奖金,以鼓励代理商符合所证明的行为。然后,在收集成功的剧集时,我们将其在将其添加到重播缓冲区之前与相同的奖金转换,鼓励代理也与其先前的成功相匹配。我们的实验专注于操纵机器人,特别是在模拟中有6个自由的机器人手臂的三个任务。我们表明,即使在没有示范的情况下,我们基于奖励重新标记的方法可以提高基础算法(SAC和DDPG)对这些任务的性能。此外,集成到我们的方法中的两种改进来自以前的作品,允许我们的方法优于所有基线。
translated by 谷歌翻译
Deep reinforcement learning (DRL) provides a new way to generate robot control policy. However, the process of training control policy requires lengthy exploration, resulting in a low sample efficiency of reinforcement learning (RL) in real-world tasks. Both imitation learning (IL) and learning from demonstrations (LfD) improve the training process by using expert demonstrations, but imperfect expert demonstrations can mislead policy improvement. Offline to Online reinforcement learning requires a lot of offline data to initialize the policy, and distribution shift can easily lead to performance degradation during online fine-tuning. To solve the above problems, we propose a learning from demonstrations method named A-SILfD, which treats expert demonstrations as the agent's successful experiences and uses experiences to constrain policy improvement. Furthermore, we prevent performance degradation due to large estimation errors in the Q-function by the ensemble Q-functions. Our experiments show that A-SILfD can significantly improve sample efficiency using a small number of different quality expert demonstrations. In four Mujoco continuous control tasks, A-SILfD can significantly outperform baseline methods after 150,000 steps of online training and is not misled by imperfect expert demonstrations during training.
translated by 谷歌翻译
在现实世界中学习机器人任务仍然是高度挑战性的,有效的实用解决方案仍有待发现。在该领域使用的传统方法是模仿学习和强化学习,但是当应用于真正的机器人时,它们都有局限性。将强化学习与预先收集的演示结合在一起是一种有前途的方法,可以帮助学习控制机器人任务的控制政策。在本文中,我们提出了一种使用新技术来利用离线和在线培训来利用离线专家数据的算法,以获得更快的收敛性和提高性能。拟议的算法(AWET)用新颖的代理优势权重对批评损失进行了加权,以改善专家数据。此外,AWET利用自动的早期终止技术来停止和丢弃与专家轨迹不同的策略推出 - 以防止脱离专家数据。在一项消融研究中,与在四个标准机器人任务上的最新基线相比,AWET表现出改善和有希望的表现。
translated by 谷歌翻译
深度加固学习(DRL)使机器人能够结束结束地执行一些智能任务。然而,长地平线稀疏奖励机器人机械手任务仍存在许多挑战。一方面,稀疏奖励设置会导致探索效率低下。另一方面,使用物理机器人的探索是高成本和不安全的。在本文中,我们提出了一种学习使用本文中名为基础控制器的一个或多个现有传统控制器的长地平线稀疏奖励任务。基于深度确定性的政策梯度(DDPG),我们的算法将现有基础控制器融入勘探,价值学习和策略更新的阶段。此外,我们介绍了合成不同基础控制器以整合它们的优点的直接方式。通过从堆叠块到杯子的实验,证明学习的国家或基于图像的策略稳定优于基础控制器。与以前的示范中的学习作品相比,我们的方法通过数量级提高了样品效率,提高了性能。总体而言,我们的方法具有利用现有的工业机器人操纵系统来构建更灵活和智能控制器的可能性。
translated by 谷歌翻译
如何在演示相对较大时更加普遍地进行模仿学习一直是强化学习(RL)的持续存在问题。糟糕的示威活动导致狭窄和偏见的日期分布,非马洛维亚人类专家演示使代理商难以学习,而过度依赖子最优轨迹可以使代理商努力提高其性能。为了解决这些问题,我们提出了一种名为TD3FG的新算法,可以平稳地过渡从专家到学习从经验中学习。我们的算法在Mujoco环境中实现了有限的有限和次优的演示。我们使用行为克隆来将网络作为参考动作发生器训练,并在丢失函数和勘探噪声方面使用它。这种创新可以帮助代理商从示威活动中提取先验知识,同时降低了糟糕的马尔科维亚特性的公正的不利影响。与BC +微调和DDPGFD方法相比,它具有更好的性能,特别是当示范相对有限时。我们调用我们的方法TD3FG意味着来自发电机的TD3。
translated by 谷歌翻译
Reinforcement learning in partially observable domains is challenging due to the lack of observable state information. Thankfully, learning offline in a simulator with such state information is often possible. In particular, we propose a method for partially observable reinforcement learning that uses a fully observable policy (which we call a state expert) during offline training to improve online performance. Based on Soft Actor-Critic (SAC), our agent balances performing actions similar to the state expert and getting high returns under partial observability. Our approach can leverage the fully-observable policy for exploration and parts of the domain that are fully observable while still being able to learn under partial observability. On six robotics domains, our method outperforms pure imitation, pure reinforcement learning, the sequential or parallel combination of both types, and a recent state-of-the-art method in the same setting. A successful policy transfer to a physical robot in a manipulation task from pixels shows our approach's practicality in learning interesting policies under partial observability.
translated by 谷歌翻译
Deep reinforcement learning algorithms have succeeded in several challenging domains. Classic Online RL job schedulers can learn efficient scheduling strategies but often takes thousands of timesteps to explore the environment and adapt from a randomly initialized DNN policy. Existing RL schedulers overlook the importance of learning from historical data and improving upon custom heuristic policies. Offline reinforcement learning presents the prospect of policy optimization from pre-recorded datasets without online environment interaction. Following the recent success of data-driven learning, we explore two RL methods: 1) Behaviour Cloning and 2) Offline RL, which aim to learn policies from logged data without interacting with the environment. These methods address the challenges concerning the cost of data collection and safety, particularly pertinent to real-world applications of RL. Although the data-driven RL methods generate good results, we show that the performance is highly dependent on the quality of the historical datasets. Finally, we demonstrate that by effectively incorporating prior expert demonstrations to pre-train the agent, we short-circuit the random exploration phase to learn a reasonable policy with online training. We utilize Offline RL as a \textbf{launchpad} to learn effective scheduling policies from prior experience collected using Oracle or heuristic policies. Such a framework is effective for pre-training from historical datasets and well suited to continuous improvement with online data collection.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
有效的探索仍然是一个重要的挑战,这可以防止为许多物理系统部署加强学习。对于具有连续和高维状态和动作空间的系统尤其如此,例如机器人操纵器。挑战在稀疏奖励环境中强调,其中设计密集奖励设计所需的低级状态信息不可用。对手仿制学习(AIL)可以通过利用专家生成的最佳行为和基本上提供替代奖励信息的替代来部分克服这一屏障。不幸的是,专家示范的可用性并不一定能够改善代理商有效探索的能力,并且正如我们经常展现所在,可以导致效率低或停滞不前。我们从引导播放(LFGP)中展示了一个框架,其中我们利用了专家演示,除了主要任务,多个辅助任务。随后,使用修改的AIL过程来使用分层模型来学习每个任务奖励和策略,其中通过组合不同任务的调度程序强制对所有任务的探索。这提供了许多好处:具有挑战瓶颈转换的主要任务的学习效率得到改善,专家数据在任务之间可重复使用,并且通过重用学习辅助任务模型的传输学习成为可能。我们在一个具有挑战性的多任务机器人操纵域中的实验结果表明我们的方法有利地对监督模仿学习和最先进的AIL方法进行比较。代码可在https://github.com/utiasstars/lfgp获得。
translated by 谷歌翻译
通过模仿学习(IL)使用用户提供的演示,或者通过使用大量的自主收集的体验来学习机器人技能。方法具有互补的经验和缺点:RL可以达到高度的性能,但需要缺陷,但是需要缺乏要求,但是需要达到高水平的性能,但需要达到高度的性能这可能非常耗时和不安全; IL不要求Xploration,但只学习与所提供的示范一样好的技能。一种方法将两种方法的优势结合在一起?一系列的方法旨在解决这个问题,提出了整合IL和RL的元素的各种技术。然而,扩大了这种方法,这些方法复杂的机器人技能,整合了不同的离线数据,概括到现实世界的情景仍然存在重大挑战。在本文中,USAIM是测试先前IL + RL算法的可扩展性,并设计了一种系统的详细实验实验,这些实验结合了现有的组件,其具有效果有效和可扩展的方式。为此,我们展示了一系列关于了解每个设计决定的影响的一系列实验,以便开发可以利用示范和异构的先前数据在一系列现实世界和现实的模拟问题上获得最佳表现的批准方法。我们通过致电Wap-opt的完整方法将优势加权回归[1,2]和QT-opt [3]结合在一起,提供了一个UnifiedAgveach,用于集成机器人操作的演示和离线数据。请参阅HTTPS: //awopt.github.io有关更多详细信息。
translated by 谷歌翻译
最近,目睹了利用专家国家在模仿学习(IL)中的各种成功应用。然而,来自视觉输入(ILFVI)的另一个IL设定 - IL,它通过利用在线视觉资源而具有更大的承诺,它具有低数据效率和良好的性能,从政策学习方式和高度产生了差 - 宣称视觉输入。我们提出了由禁止策略学习方式,数据增强和编码器技术组成的OPIFVI(视觉输入的偏离策略模仿),分别分别解决所提到的挑战。更具体地,为了提高数据效率,OPIFVI以脱策方式进行IL,可以多次使用采样数据。此外,我们提高了opifvi与光谱归一化的稳定性,以减轻脱助政策培训的副作用。我们认为代理商的ILFVI表现不佳的核心因素可能不会从视觉输入中提取有意义的功能。因此,Opifvi采用计算机愿望的数据增强,以帮助列车编码器,可以更好地从视觉输入中提取功能。另外,对编码器的梯度背交量的特定结构旨在稳定编码器训练。最后,我们证明OPIFVI能够实现专家级性能和优于现有的基线,无论是通过使用Deepmind控制套件的广泛实验,无论视觉演示还是视觉观测。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
由于配置空间的高维度以及受各种材料特性影响的动力学的复杂性,布料操纵是一项具有挑战性的任务。复杂动力学的效果甚至在动态折叠中更为明显,例如,当平方板通过单个操纵器将一块织物折叠为两种时。为了说明复杂性和不确定性,使用例如通常需要视觉。但是,构建动态布折叠的视觉反馈政策是一个开放的问题。在本文中,我们提出了一种解决方案,该解决方案可以使用强化学习(RL)学习模拟政策,并将学识渊博的政策直接转移到现实世界中。此外,要学习一种操纵多种材料的单一策略,我们将模拟中的材料属性随机化。我们评估了现实世界实验中视觉反馈和材料随机化的贡献。实验结果表明,所提出的解决方案可以使用现实世界中的动态操作成功地折叠不同的面料类型。代码,数据和视频可从https://sites.google.com/view/dynamic-cloth-folding获得
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译