'Actions' play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform 'Reasoning about Actions & Change' (RAC). This has been an important research direction in Artificial Intelligence (AI) in general, but the study of RAC with visual and linguistic inputs is relatively recent. The CLEVR_HYP (Sampat et. al., 2021) is one such testbed for hypothetical vision-language reasoning with actions as the key focus. In this work, we propose a novel learning strategy that can improve reasoning about the effects of actions. We implement an encoder-decoder architecture to learn the representation of actions as vectors. We combine the aforementioned encoder-decoder architecture with existing modality parsers and a scene graph question answering model to evaluate our proposed system on the CLEVR_HYP dataset. We conduct thorough experiments to demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
translated by 谷歌翻译
'Actions' play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform 'Reasoning about Actions & Change' (RAC). Recently, there has been growing interest in the study of RAC with visual and linguistic inputs. Graphs are often used to represent semantic structure of the visual content (i.e. objects, their attributes and relationships among objects), commonly referred to as scene-graphs. In this work, we propose a novel method that leverages scene-graph representation of images to reason about the effects of actions described in natural language. We experiment with existing CLEVR_HYP (Sampat et. al, 2021) dataset and show that our proposed approach is effective in terms of performance, data efficiency, and generalization capability compared to existing models.
translated by 谷歌翻译
“行动”在人类与世界互动并使他们实现理想的目标方面起着至关重要的作用。结果,对人类的最常识(CS)知识围绕着行动。尽管“关于行动与变革的推理”(RAC)在知识代表社区中得到了广泛的研究,但它最近引起了NLP和计算机视觉研究人员的兴趣。本文调查了现有的任务,基准数据集,各种技术和模型,以及它们在视觉和语言领域中RAC中进步的各自绩效。最后,我们总结了我们的关键要点,讨论该研究领域面临的目前挑战,并概述了未来研究的潜在方向。
translated by 谷歌翻译
Videos often capture objects, their visible properties, their motion, and the interactions between different objects. Objects also have physical properties such as mass, which the imaging pipeline is unable to directly capture. However, these properties can be estimated by utilizing cues from relative object motion and the dynamics introduced by collisions. In this paper, we introduce CRIPP-VQA, a new video question answering dataset for reasoning about the implicit physical properties of objects in a scene. CRIPP-VQA contains videos of objects in motion, annotated with questions that involve counterfactual reasoning about the effect of actions, questions about planning in order to reach a goal, and descriptive questions about visible properties of objects. The CRIPP-VQA test set enables evaluation under several out-of-distribution settings -- videos with objects with masses, coefficients of friction, and initial velocities that are not observed in the training distribution. Our experiments reveal a surprising and significant performance gap in terms of answering questions about implicit properties (the focus of this paper) and explicit properties of objects (the focus of prior work).
translated by 谷歌翻译
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
We present a new AI task -Embodied Question Answering (EmbodiedQA) -where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ('orange'). This challenging task requires a range of AI skills -active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
Current computer vision models, unlike the human visual system, cannot yet achieve general-purpose visual understanding. Existing efforts to create a general vision model are limited in the scope of assessed tasks and offer no overarching framework to perform them holistically. We present a new comprehensive benchmark, General-purpose Visual Understanding Evaluation (G-VUE), covering the full spectrum of visual cognitive abilities with four functional domains $\unicode{x2014}$ Perceive, Ground, Reason, and Act. The four domains are embodied in 11 carefully curated tasks, from 3D reconstruction to visual reasoning and manipulation. Along with the benchmark, we provide a general encoder-decoder framework to allow for the evaluation of arbitrary visual representation on all 11 tasks. We evaluate various pre-trained visual representations with our framework and observe that (1) Transformer-based visual backbone generally outperforms CNN-based backbone on G-VUE, (2) visual representations from vision-language pre-training are superior to those with vision-only pre-training across visual tasks. With G-VUE, we provide a holistic evaluation standard to motivate research toward building general-purpose visual systems via obtaining more general-purpose visual representations.
translated by 谷歌翻译
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
现有的视觉问题回答方法倾向于捕获视觉和语言方式中的虚假相关性,并且未能发现真正的休闲机制,这些机制是基于主导的视觉证据和正确的问题意图而实现推理的真正休闲机制。此外,现有方法通常忽略了多模式设置中复杂的事件级别的理解,这需要因果推断对共同模型跨模式事件的时间性,因果关系和动力学的强大认知能力。在这项工作中,我们通过引入因果干预方法来减轻虚假相关性并发现真实的因果结构,从而从新的角度(即跨模式因果关系推理)回答事件级别的视觉问题,即跨模式的因果关系推理并发现了真实的因果结构,以集成视觉和语言的相关性方式。具体而言,我们提出了一个新颖的事件级视觉问题答案框架,称为跨模式因果关系推理(CMCIR),以实现强大的偶然性随意感知的视觉视觉语言问题。为了揭示视觉和语言方式的因果结构,提出了新颖的因果关系 - 感知视觉语言推理(CVLR)模块,以通过精心设计的前对门和后门Causal Causal Intervention模块进行合作地解散视觉和语言的杂语相关性。为了发现语言语义和时空表示之间的细粒度相互作用,我们构建了一种新型的时空变压器(STT),该变压器(STT)构建了视觉内容和语言内容之间的多模式共发生相互作用。大规模事件级城市数据集SUTD-TrafficQA和三个基准现实世界数据集TGIF-QA,MSVD-QA和MSRVTT-QA进行了广泛的实验,这证明了我们的CMCIR在发现视觉效果的Causal Causal Causal结构中的有效性。
translated by 谷歌翻译
机器人社区早已期望在混乱环境中处理物体的能力。但是,大多数作品只是专注于操纵,而不是在混乱的对象中呈现隐藏的语义信息。在这项工作中,我们介绍了在混乱的场景中进行体现探索的场景图,以解决此问题。为了在混乱的情况下验证我们的方法,我们采用操纵问题答案(MQA)任务作为我们的测试基准,该测试基准要求具有体现的机器人具有主动探索能力和视觉和语言的语义理解能力。任务,我们提出了一种模仿学习方法,以生成探索的操作。同时,采用了基于动态场景图的VQA模型来理解操纵器手腕摄像头的一系列RGB帧以及操纵的每一步,以在我们的框架中回答问题。我们提出的框架对于MQA任务有效,代表了混乱的场景中的任务。
translated by 谷歌翻译
视觉问题应答(VQA)是一个具有挑战性的任务,在计算机视觉和自然语言处理领域中引起了越来越多的关注。然而,目前的视觉问题回答具有语言偏差问题,这减少了模型的稳健性,对视觉问题的实际应用产生了不利影响。在本文中,我们首次对该领域进行了全面的审查和分析,并根据三个类别对现有方法进行分类,包括增强视觉信息,弱化语言前瞻,数据增强和培训策略。与此同时,依次介绍相关的代表方法,依次汇总和分析。揭示和分类语言偏见的原因。其次,本文介绍了主要用于测试的数据集,并报告各种现有方法的实验结果。最后,我们讨论了该领域的可能的未来研究方向。
translated by 谷歌翻译
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages Visual Genome scene graph structures to create 22M diverse reasoning questions, which all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. A careful analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains a mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding of vision and language.
translated by 谷歌翻译
搭配机器人的效用在很大程度上取决于人类的简单和直观的相互作用机制。如果机器人在自然语言中接受任务指令,首先,它必须通过解码指令来了解用户的意图。然而,在执行任务时,由于观察到的场景的变化,机器人可能面临不可预见的情况,因此需要进一步的用户干预。在本文中,我们提出了一个称为谈话的系统,该系统使机器人能够通过在视觉上观察僵局来启动与教师的相干对话交换。通过对话,它要么在原始计划中找到一个提示,它是一个可接受的替代原始计划的替代方案,或者完全肯定地中止任务。为了实现可能的僵局,我们利用观察到的场景的密集标题和给定的指令,共同计算机器人的下一个动作。我们基于初始指令和情境场景对的数据集评估我们的系统。我们的系统可以识别僵局,并以适当的对话交换来解决82%的准确性。此外,与现有技术相比,用户学习表明,我们的系统的问题更自然(4.02平均为1到5的平均值)(平均3.08)。
translated by 谷歌翻译
从“Internet AI”的时代到“体现AI”的时代,AI算法和代理商出现了一个新兴范式转变,其中不再从主要来自Internet策划的图像,视频或文本的数据集。相反,他们通过与与人类类似的Enocentric感知来通过与其环境的互动学习。因此,对体现AI模拟器的需求存在大幅增长,以支持各种体现的AI研究任务。这种越来越多的体现AI兴趣是有利于对人工综合情报(AGI)的更大追求,但对这一领域并无一直存在当代和全面的调查。本文旨在向体现AI领域提供百科全书的调查,从其模拟器到其研究。通过使用我们提出的七种功能评估九个当前体现的AI模拟器,旨在了解模拟器,以其在体现AI研究和其局限性中使用。最后,本文调查了体现AI - 视觉探索,视觉导航和体现问题的三个主要研究任务(QA),涵盖了最先进的方法,评估指标和数据集。最后,随着通过测量该领域的新见解,本文将为仿真器 - 任务选择和建议提供关于该领域的未来方向的建议。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent advances in vision and language methods have made incredible progress in closely related areas. This is significant because a robot interpreting a naturallanguage navigation instruction on the basis of what it sees is carrying out a vision and language process that is similar to Visual Question Answering. Both tasks can be interpreted as visually grounded sequence-to-sequence translation problems, and many of the same methods are applicable. To enable and encourage the application of vision and language methods to the problem of interpreting visuallygrounded navigation instructions, we present the Matter-port3D Simulator -a large-scale reinforcement learning environment based on real imagery [11]. Using this simulator, which can in future support a range of embodied vision and language tasks, we provide the first benchmark dataset for visually-grounded natural language navigation in real buildings -the Room-to-Room (R2R) dataset 1 .1 https://bringmeaspoon.org Instruction: Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.
translated by 谷歌翻译