We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages Visual Genome scene graph structures to create 22M diverse reasoning questions, which all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. A careful analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains a mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding of vision and language.
translated by 谷歌翻译
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
人类视觉感知的关键方面是能够将视觉场景分解为单个对象并进一步进入对象部分,形成部分整个层次结构。这种复合结构可以诱导丰富的语义概念和关系,从而在视觉信号的解释和组织中发挥着重要作用,以及视觉感知和推理的概括。但是,现有的视觉推理基准主要专注于物体而不是零件。基于完整的部分整个层次结构的视觉推理比以前粒度概念,更丰富的几何关系和更复杂的物理学所致的对象的推理更具挑战性。因此,为了更好地为基于部分的概念,关系和物理推理服务,我们介绍了一个名为PTR的新型大规模诊断视觉推理数据集。 PTR包含大约70k RGBD合成图像,具有地面真理对象和有关语义实例分段,颜色属性,空间和几何关系的部分级别注释,以及诸如稳定性的某些物理性质。这些图像与700K机生成的问题配对,涵盖各种类型的推理类型,使其成为视觉推理模型的良好测试平台。我们在这个数据集上检查了几种最先进的视觉推理模型,并观察到他们在人类可以容易地推断正确答案的情况下仍然存在许多令人惊讶的错误。我们认为,此数据集将开辟基于零件推理的新机会。
translated by 谷歌翻译
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ∼0.25M images, ∼0.76M questions, and ∼10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).
translated by 谷歌翻译
目前的视觉问题应答(VQA)任务主要考虑回答自然图像的人为注释问题。然而,除了自然图像之外,在视觉理解和推理研究中仍然可以解读具有语义丰富性的抽象图。在这项工作中,我们介绍了ICON问题的新挑战(ICONQA),其目标是在图标图像上下文中回答问题。我们发布了ICONQA,这是一个由107,439个问题和三个子任务组成的大型数据集:多图像选择,多文本选择和填充空白。 ICONQA数据集是由真实世界图中的启发,突出了抽象图理解和综合认知推理的重要性。因此,ICONQA不仅需要对象识别和文本理解等感知技能,而且还需要多种认知推理技能,例如几何推理,致辞推理和算术推理。为了促进潜在的iconqa模型来学习图标图像的语义表示,我们进一步发布了一个图标数据集图标645,其中包含377级上的645,687个彩色图标。我们进行广泛的用户研究和盲目实验,并重现各种先进的VQA方法来基准iconQA任务。此外,我们开发了一个强大的ICONQA基线Patch-TRM,它应用金字塔跨模型变压器,其中包含在图标数据集上预先培训的输入图嵌入式。 iconqa和图标645可在https://iconqa.github.io提供。
translated by 谷歌翻译
We introduce a new dataset for joint reasoning about natural language and images, with a focus on semantic diversity, compositionality, and visual reasoning challenges. The data contains 107,292 examples of English sentences paired with web photographs. The task is to determine whether a natural language caption is true about a pair of photographs. We crowdsource the data using sets of visually rich images and a compare-and-contrast task to elicit linguistically diverse language. Qualitative analysis shows the data requires compositional joint reasoning, including about quantities, comparisons, and relations. Evaluation using state-of-the-art visual reasoning methods shows the data presents a strong challenge. * Contributed equally. † Work done as an undergraduate at Cornell University. 1 In parts of this paper, we use the term compositional differently than it is commonly used in linguistics to refer to reasoning that requires composition. This type of reasoning often manifests itself in highly compositional language.2 Appendix G contains license information for all photographs used in this paper. 3 The top example is True, while the bottom is False.
translated by 谷歌翻译
我们介绍了CLEVR-MATH,这是一个多模式数学单词问题数据集,该数据集由涉及加法/减法的简单数学单词问题组成,部分地表示文本描述,部分地是由图像说明了场景。文本描述了图像中描述的场景上执行的动作。由于提出的问题可能与图像中的场景有关,而是针对采用动作之前或之后的场景状态,因此求解器设想或想象由于这些动作而导致的状态发生了变化。解决这些单词问题需要语言,视觉和数学推理的结合。我们将最新的神经和神经符号模型应用于CLEVR-MATH的视觉问题,并经验评估其表现。我们的结果表明,两种方法如何推广到操作链。我们讨论了两者在解决多模式单词问题解决的任务时的局限性。
translated by 谷歌翻译
3D场景理解是一个相对新兴的研究领域。在本文中,我们介绍了3D现实世界场景(VQA-3D)中的视觉问题应答任务,旨在给出3D场景的所有可能的问题。为了解决这个问题,提出了第一个VQA-3D数据集,即CLEVR3D,其中包含在1,129个现实世界场景中的60k个问题。具体而言,我们开发一个问题发动机利用3D场景图结构来生成不同的推理问题,涵盖物体属性的问题(即,大小,颜色和材料)及其空间关系。建立在此数据集之上,我们进一步设计了第一个VQA-3D基线模型TransVQA3D。 TransVQA3D型号采用精心设计的变压器架构,实现优越的VQA-3D性能,与纯语言基线和先前的3D推理方法直接应用于3D场景。实验结果验证了VQA-3D作为辅助任务可以提高3D场景理解的性能,包括节点明智分类和全图识别的场景图分析。
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
最近,3D视觉和语言任务吸引了不断增长的研究兴趣。与其他视觉和语言任务相比,3D视觉问题回答(VQA)任务的利用较小,并且更容易受到语言先验和共同参考的歧义。同时,由于规模和注释方法有限,最近提出的几个3D VQA数据集并不能很好地支持3D VQA任务。在这项工作中,我们通过收集一个新的3D VQA数据集(称为FE-3DGQA),正式定义和解决3D接地的VQA任务,并具有多样化且相对自由形式的提问,以及密集和完全接地的边界框注释。为了获得更多可解释的答案,我们标记了出现在复杂的质量检查对中的对象,该对象具有不同的语义类型,包括答案接地的对象(均出现并未出现在问题中),以及用于答案的对象的上下文对象。我们还提出了一个新的3D VQA框架,以有效地预测完全视觉扎根和可解释的答案。广泛的实验证明,我们新收集的基准数据集可有效地用于评估不同方面的各种3D VQA方法,而我们新提出的框架也可以在新的基准数据集中实现最新的性能。新收集的数据集和我们的代码都将在http://github.com/zlccccc/3dgqa上公开获得。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
Visual Question Answering (VQA) models often perform poorly on out-of-distribution data and struggle on domain generalization. Due to the multi-modal nature of this task, multiple factors of variation are intertwined, making generalization difficult to analyze. This motivates us to introduce a virtual benchmark, Super-CLEVR, where different factors in VQA domain shifts can be isolated in order that their effects can be studied independently. Four factors are considered: visual complexity, question redundancy, concept distribution and concept compositionality. With controllably generated data, Super-CLEVR enables us to test VQA methods in situations where the test data differs from the training data along each of these axes. We study four existing methods, including two neural symbolic methods NSCL and NSVQA, and two non-symbolic methods FiLM and mDETR; and our proposed method, probabilistic NSVQA (P-NSVQA), which extends NSVQA with uncertainty reasoning. P-NSVQA outperforms other methods on three of the four domain shift factors. Our results suggest that disentangling reasoning and perception, combined with probabilistic uncertainty, form a strong VQA model that is more robust to domain shifts. The dataset and code are released at https://github.com/Lizw14/Super-CLEVR.
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.
translated by 谷歌翻译
We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoning. Recently the new task of visual question answering (QA) has been proposed to evaluate a model's capacity for deep image understanding. Previous works have established a loose, global association between QA sentences and images. However, many questions and answers, in practice, relate to local regions in the images. We establish a semantic link between textual descriptions and image regions by object-level grounding. It enables a new type of QA with visual answers, in addition to textual answers used in previous work. We study the visual QA tasks in a grounded setting with a large collection of 7W multiple-choice QA pairs. Furthermore, we evaluate human performance and several baseline models on the QA tasks. Finally, we propose a novel LSTM model with spatial attention to tackle the 7W QA tasks.
translated by 谷歌翻译
根据图像回答语义复杂的问题是在视觉问题应答(VQA)任务中的具有挑战性。虽然图像可以通过深度学习来良好代表,但是始终简单地嵌入问题,并且不能很好地表明它的含义。此外,视觉和文本特征具有不同模式的间隙,很难对齐和利用跨模块信息。在本文中,我们专注于这两个问题,并提出了一种匹配关注(GMA)网络的图表。首先,它不仅为图像构建图形,而且在句法和嵌入信息方面构建了该问题的图表。接下来,我们通过双级图形编码器探讨了模特内的关系,然后呈现双边跨模型图匹配注意力以推断图像与问题之间的关系。然后将更新的跨模式特征发送到答案预测模块中以进行最终答案预测。实验表明,我们的网络在GQA数据集和VQA 2.0数据集上达到了最先进的性能。消融研究验证了GMA网络中每个模块的有效性。
translated by 谷歌翻译
Visual question answering is fundamentally compositional in nature-a question like where is the dog? shares substructure with questions like what color is the dog? and where is the cat? This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning neural module networks, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.
translated by 谷歌翻译