Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
Visual question answering is fundamentally compositional in nature-a question like where is the dog? shares substructure with questions like what color is the dog? and where is the cat? This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning neural module networks, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.
translated by 谷歌翻译
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning -answering image-related questions which require a multi-step, high-level process -a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-theart error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
人类视觉感知的关键方面是能够将视觉场景分解为单个对象并进一步进入对象部分,形成部分整个层次结构。这种复合结构可以诱导丰富的语义概念和关系,从而在视觉信号的解释和组织中发挥着重要作用,以及视觉感知和推理的概括。但是,现有的视觉推理基准主要专注于物体而不是零件。基于完整的部分整个层次结构的视觉推理比以前粒度概念,更丰富的几何关系和更复杂的物理学所致的对象的推理更具挑战性。因此,为了更好地为基于部分的概念,关系和物理推理服务,我们介绍了一个名为PTR的新型大规模诊断视觉推理数据集。 PTR包含大约70k RGBD合成图像,具有地面真理对象和有关语义实例分段,颜色属性,空间和几何关系的部分级别注释,以及诸如稳定性的某些物理性质。这些图像与700K机生成的问题配对,涵盖各种类型的推理类型,使其成为视觉推理模型的良好测试平台。我们在这个数据集上检查了几种最先进的视觉推理模型,并观察到他们在人类可以容易地推断正确答案的情况下仍然存在许多令人惊讶的错误。我们认为,此数据集将开辟基于零件推理的新机会。
translated by 谷歌翻译
人们容易概括到新型域和刺激的知识。我们提出了一种在计算模型中实例化的理论,基于跨域人类中的跨域泛化是对结构化(即,象征性)关系表示的模拟推断的情况。该模型是LISA和关系推论和学习的DORA模型的延伸。生成的模型在没有监控的情况下,从非关系输入中的关系和格式(即结构)(即,结构)既与强化学习的容量增强,利用这些表示来学习单个域,然后向新域推广首先通过模拟推理(即零拍摄学习)。我们展示了模型从各种简单的视觉刺激学习结构化关系表示的能力,并在视频游戏(突破和乒乓球)和几个心理任务之间进行跨域泛化。我们展示了模型的轨迹在学到关系时,旨在让孩子的轨迹镜头紧密地镜子,从文学中占据了儿童推理和类比制作的文献中的现象。该模型在域之间的概括能力展示了在其基础关系结构方面代表域的灵活性,而不是简单地就其投入和产出之间的统计关系而言。
translated by 谷歌翻译
Reasoning about objects, relations, and physics is central to human intelligence, and a key goal of artificial intelligence. Here we introduce the interaction network, a model which can reason about how objects in complex systems interact, supporting dynamical predictions, as well as inferences about the abstract properties of the system. Our model takes graphs as input, performs object-and relation-centric reasoning in a way that is analogous to a simulation, and is implemented using deep neural networks. We evaluate its ability to reason about several challenging physical domains: n-body problems, rigid-body collision, and non-rigid dynamics. Our results show it can be trained to accurately simulate the physical trajectories of dozens of objects over thousands of time steps, estimate abstract quantities such as energy, and generalize automatically to systems with different numbers and configurations of objects and relations. Our interaction network implementation is the first general-purpose, learnable physics engine, and a powerful general framework for reasoning about object and relations in a wide variety of complex real-world domains.
translated by 谷歌翻译
近年来,视觉问题应答(VQA)在近年来,由于了解来自多种方式的信息(即图像,语言),近年来近年来在近年来的机器学习社区中获得了很多牵引力。在VQA中,基于一组图像提出了一系列问题,并且手头的任务是到达答案。为实现这一目标,我们采用了一种基于象征的推理方法,使用正式逻辑框架。图像和问题被转换为执行显式推理的符号表示。我们提出了一种正式的逻辑框架,其中(i)图像在场景图的帮助下将图像转换为逻辑背景事实,(ii)问题被基于变压器的深度学习模型转换为一阶谓词逻辑条款,(iii)通过使用背景知识和谓词条款的接地来执行可靠性检查,以获得答案。我们所提出的方法是高度解释的,并且可以通过人容易地分析管道中的每个步骤。我们验证了我们在CLEVR和GQA数据集上的方法。我们在Clevr DataSet上实现了99.6%的近似完美的准确性,可与艺术模式相当,展示正式逻辑是一个可行的工具来解决视觉问题的回答。我们的模型也是数据高效,在仅在培训数据的10%培训时,在缩放数据集中实现99.1%的准确性。
translated by 谷歌翻译
主张神经符号人工智能(NESY)断言,将深度学习与象征性推理相结合将导致AI更强大,而不是本身。像深度学习一样成功,人们普遍认为,即使我们最好的深度学习系统也不是很擅长抽象推理。而且,由于推理与语言密不可分,因此具有直觉的意义,即自然语言处理(NLP)将成为NESY特别适合的候选人。我们对实施NLP实施NESY的研究进行了结构化审查,目的是回答Nesy是否确实符合其承诺的问题:推理,分布概括,解释性,学习和从小数据的可转让性以及新的推理到新的域。我们研究了知识表示的影响,例如规则和语义网络,语言结构和关系结构,以及隐式或明确的推理是否有助于更高的承诺分数。我们发现,将逻辑编译到神经网络中的系统会导致满足最NESY的目标,而其他因素(例如知识表示或神经体系结构的类型)与实现目标没有明显的相关性。我们发现在推理的定义方式上,特别是与人类级别的推理有关的许多差异,这会影响有关模型架构的决策并推动结论,这些结论在整个研究中并不总是一致的。因此,我们倡导采取更加有条不紊的方法来应用人类推理的理论以及适当的基准的发展,我们希望这可以更好地理解该领域的进步。我们在GitHub上提供数据和代码以进行进一步分析。
translated by 谷歌翻译
We present a new AI task -Embodied Question Answering (EmbodiedQA) -where an agent is spawned at a random location in a 3D environment and asked a question ('What color is the car?'). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ('orange'). This challenging task requires a range of AI skills -active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.
translated by 谷歌翻译
We introduce a new dataset for joint reasoning about natural language and images, with a focus on semantic diversity, compositionality, and visual reasoning challenges. The data contains 107,292 examples of English sentences paired with web photographs. The task is to determine whether a natural language caption is true about a pair of photographs. We crowdsource the data using sets of visually rich images and a compare-and-contrast task to elicit linguistically diverse language. Qualitative analysis shows the data requires compositional joint reasoning, including about quantities, comparisons, and relations. Evaluation using state-of-the-art visual reasoning methods shows the data presents a strong challenge. * Contributed equally. † Work done as an undergraduate at Cornell University. 1 In parts of this paper, we use the term compositional differently than it is commonly used in linguistics to refer to reasoning that requires composition. This type of reasoning often manifests itself in highly compositional language.2 Appendix G contains license information for all photographs used in this paper. 3 The top example is True, while the bottom is False.
translated by 谷歌翻译
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages Visual Genome scene graph structures to create 22M diverse reasoning questions, which all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. A careful analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains a mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding of vision and language.
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
Neural-symbolic computing (NeSy), which pursues the integration of the symbolic and statistical paradigms of cognition, has been an active research area of Artificial Intelligence (AI) for many years. As NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks, it may serve as a catalyst for the next generation of AI. In the present paper, we provide a systematic overview of the important and recent developments of research on NeSy AI. Firstly, we introduce study history of this area, covering early work and foundations. We further discuss background concepts and identify key driving factors behind the development of NeSy. Afterward, we categorize recent landmark approaches along several main characteristics that underline this research paradigm, including neural-symbolic integration, knowledge representation, knowledge embedding, and functionality. Then, we briefly discuss the successful application of modern NeSy approaches in several domains. Finally, we identify the open problems together with potential future research directions. This survey is expected to help new researchers enter this rapidly-developing field and accelerate progress towards data-and knowledge-driven AI.
translated by 谷歌翻译
视觉奇数任务被认为是对人类的普遍独立的分析智能测试。人工智能的进步导致了重要的突破,但是与人类在此类分析智能任务上竞争仍然具有挑战性,并且通常诉诸于非生物学上的架构。我们提出了一个具有生物学现实的系统,该系统从合成眼动运动中接收输入 - 扫视,并与结合新皮质神经元动力学的神经元一起处理它们。我们介绍了一个程序生成的视觉奇数数据集,以训练扩展常规关系网络和我们建议的系统的体系结构。两种方法都超过了人类的准确性,我们发现两者都具有相同的基本推理基本机制。最后,我们表明,具有生物学启发的网络可实现卓越的准确性,学习速度更快,所需的参数比常规网络更少。
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
'Actions' play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform 'Reasoning about Actions & Change' (RAC). This has been an important research direction in Artificial Intelligence (AI) in general, but the study of RAC with visual and linguistic inputs is relatively recent. The CLEVR_HYP (Sampat et. al., 2021) is one such testbed for hypothetical vision-language reasoning with actions as the key focus. In this work, we propose a novel learning strategy that can improve reasoning about the effects of actions. We implement an encoder-decoder architecture to learn the representation of actions as vectors. We combine the aforementioned encoder-decoder architecture with existing modality parsers and a scene graph question answering model to evaluate our proposed system on the CLEVR_HYP dataset. We conduct thorough experiments to demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
translated by 谷歌翻译