深度生成模型正在跨科学和工业广泛用于各种目的。共同挑战是实现数据概率密度的精确隐式或明确表示。最近的建议已经建议使用分类器权重来改进深生成模型的学习密度。我们向所有类型的生成模型扩展了这个想法,并展示了通过迭代生成建模的潜在空间改进,可以避免拓扑障碍,提高精度。该方法也适用于案例是目标模型是不可差异的,并且具有许多内部潜在的内部潜在尺寸,必须在细化之前被边缘化。我们在各种示例上展示了我们的潜在空间改进(激光)协议,专注于标准化流动和生成对抗网络的组合。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
在$ \ mathbb {r}^n $中观察到的自然数据通常被限制为$ m $ dimensional歧管$ \ mathcal {m} $,其中$ m <n $。当前的生成模型通过通过神经网络$ f_ \ theta映射$ m $二维潜在变量来表示此流形:\ mathbb {r}^m \ to \ mathbb {r}^n $。我们称之为Pushforward模型的此类过程产生了一个直接的限制:通常不能以单个参数化表示歧管,这意味着尝试这样做的方法将导致计算不稳定性或无法在歧管内学习概率密度。为了解决这个问题,我们建议将$ \ mathcal {m} $建模为神经隐式歧管:神经网络的零零。为了了解$ \ Mathcal {M} $中的数据分布,我们引入了受限的基于能量的模型,该模型使用Langevin Dynamics的约束变体来训练和示例在学习的歧管中。可以用歧管的算术来操纵所得模型,该模型使从业者可以采用工会和模型歧管的交叉点。在有关合成和自然数据的实验中,我们表明,受约束的EBM可以比推送模型更准确地学习具有复杂拓扑的歧管支配分布。
translated by 谷歌翻译
生成网络正在LHC的快速事件生成中打开新的途径。我们展示了生成的流量网络如何达到运动分布的百分比精度,如何与鉴别器共同培训,以及该鉴别者如何提高生成。我们的联合培训依赖于两种网络的新耦合,这些网络不需要纳什均衡。然后,我们通过贝叶斯网络设置和通过条件数据增强来估计生成的不确定性,而鉴别者确保与培训数据相比没有系统不一致。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
基于能量的模型(EBMS)最近成功地代表了少量图像的复杂分布。然而,对它们的抽样需要昂贵的马尔可夫链蒙特卡罗(MCMC)迭代在高维像素空间中缓慢混合。与EBMS不同,变形AutoEncoders(VAES)快速生成样本,并配备潜在的空间,使得数据歧管的快速遍历。然而,VAE倾向于将高概率密度分配到实际数据分布之外的数据空间中的区域,并且经常在产生清晰图像时失败。在本文中,我们提出了VAE的一个共生组成和ebm的vaebm,提供了两个世界的eBM。 VAEBM使用最先进的VAE捕获数据分布的整体模式结构,它依赖于其EBM组件,以明确地从模型中排除非数据样区域并优化图像样本。此外,VAEBM中的VAE组件允许我们通过在VAE的潜空间中重新处理它们来加速MCMC更新。我们的实验结果表明,VAEBM在几个基准图像数据集上以大量边距开辟了最先进的VAES和EBMS。它可以产生高于256 $ \倍的高质量图像,使用短MCMC链。我们还证明了VAEBM提供了完整的模式覆盖范围,并在分配外检测中表现良好。源代码可在https://github.com/nvlabs/vaebm上获得
translated by 谷歌翻译
在本文中,我们提出了一种新方法,以可靠的方式使用基于几何的变异自动编码器以可靠的方式执行数据增强。我们的方法结合了VAE被视为Riemannian歧管的适当潜在空间建模和新一代方案,该方案产生了更有意义的样本,尤其是在小型数据集的背景下。该方法通过广泛的实验研究进行了测试,在该研究中,其对数据集,分类器和训练样品的稳健性受到了强调。还可以在充满挑战的ADNI数据库上进行医学成像分类任务进行验证,其中使用拟议的VAE框架考虑了少量的3D脑MRIS并增强。在每种情况下,所提出的方法都可以在分类指标中获得显着可靠的增益。例如,在最先进的CNN分类器中,经过50次认知正常(CN)和50例阿尔茨海默氏病(AD)患者的最先进的CNN分类器,平衡准确度从66.3%跃升至74.3%,从77.7%到86.3%。具有243 CN和210 AD,同时提高了极大的敏感性和特异性指标。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
现代生成模型大致分为两个主要类别:(1)可以产生高质量随机样品但无法估算新数据点的确切密度的模型,以及(2)提供精确密度估计的模型,以样本为代价潜在空间的质量和紧凑性。在这项工作中,我们提出了LED,这是一种与gan密切相关的新生成模型,不仅允许有效采样,而且允许有效的密度估计。通过最大程度地提高对数可能的歧视器输出,我们得出了一个替代对抗优化目标,鼓励生成的数据多样性。这种表述提供了对几种流行生成模型之间关系的见解。此外,我们构建了一个基于流的生成器,该发电机可以计算生成样品的精确概率,同时允许低维度变量作为输入。我们在各种数据集上的实验结果表明,我们的密度估计器会产生准确的估计值,同时保留了生成的样品质量良好。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
马尔可夫链蒙特卡洛(MCMC),例如langevin Dynamics,有效地近似顽固的分布。但是,由于昂贵的数据采样迭代和缓慢的收敛性,它的用法在深层可变模型的背景下受到限制。本文提出了摊销的langevin Dynamics(ALD),其中数据划分的MCMC迭代完全被编码器的更新替换为将观测值映射到潜在变量中。这种摊销可实现有效的后验采样,而无需数据迭代。尽管具有效率,但我们证明ALD是MCMC算法有效的,其马尔可夫链在轻度假设下将目标后部作为固定分布。基于ALD,我们还提出了一个名为Langevin AutoCodeer(LAE)的新的深层变量模型。有趣的是,可以通过稍微修改传统自动编码器来实现LAE。使用多个合成数据集,我们首先验证ALD可以从目标后代正确获取样品。我们还在图像生成任务上评估了LAE,并证明我们的LAE可以根据变异推断(例如变异自动编码器)和其他基于MCMC的方法在测试可能性方面胜过现有的方法。
translated by 谷歌翻译
我们提出了一个利用归一化流的拓扑非平凡流形的学习概率分布的框架。当前的方法集中在对欧几里得空间同质形态的流形上,在学习模型上执行强大的结构先验或不容易扩展到高维度的操作。相比之下,我们的方法通过将多个局部模型“粘合”一起学习数据歧管上的分布,从而定义了数据歧管的开放覆盖。我们证明了我们的方法在已知流形的合成数据以及未知拓扑的较高维歧管上的效率,在许多任务中,我们的方法在许多任务中表现出更好的样品效率和竞争性或优越的性能。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
条件密度估计(CDE)是估算某些输入上的事件概率的任务。神经网络(NN)还可用于计算连续域的输出分布,这可以被视为回归任务的扩展。然而,在不知道其一般形式的信息的情况下,难以明确地近似分布。为了符合任意条件分布,将连续域分离成箱是一种有效的策略,只要我们拥有足够窄的箱和非常大的数据。然而,收集足够的数据通常很难到达,并且在许多情况下,特别是在多变量Cde的诅咒中的诅咒中的那种理想。在本文中,我们展示了使用基于Deconvolution的神经网络框架建模自由形式条件分布的好处,在离散化中应对数据缺陷问题。它具有灵活性的优点,但也利用了解压缩层提供的分层平滑度。我们将我们的方法与许多其他密度估计方法进行比较,并表明我们的解卷积密度网络(DDN)优于许多单变量和多变量任务的竞争方法。 DDN的代码可在https://github.com/nbiclab/ddn上获得。
translated by 谷歌翻译