内存重播可能是在生物脑中学习的关键,这在没有灾难性地干扰以前的知识的情况下,必须不断地学习新任务。另一方面,人工神经网络遭受灾难性的遗忘,并且倾向于在最近训练的任务上表现出色。在这项工作中,我们使用人工神经网络探讨基于空间基于空间的内存重放的应用。我们能够通过在压缩潜在空间版本中仅存储一小部分原始数据来保持先前任务中的良好性能。
translated by 谷歌翻译
由于灾难性的遗忘,计算系统的持续学习是挑战。我们在果蝇嗅觉系统中发现了两个层神经循环,通过独特地组合稀疏编码和关联学习来解决这一挑战。在第一层中,使用稀疏,高尺寸表示来编码气味,这通过激活非重叠神经元的神经元以进行不同气味来减少内存干扰。在第二层中,在学习期间仅修改异味活性神经元和与气味相关的输出神经元之间的突触;冻结其余重量以防止不相关的存储器被覆盖。我们经验和分析显示,这种简单轻型的算法显着提高了不断的学习性能。飞行关联学习算法与经典的Perceptron学习算法引人注目,尽管我们表现出两种修改对于减少灾难性遗忘至关重要。总体而言,果蝇演变了一种有效的终身学习算法,可以转换来自神经科学的电路机制以改善机器计算。
translated by 谷歌翻译
人类和其他动物的先天能力学习多样化,经常干扰,在整个寿命中的知识和技能范围是自然智能的标志,具有明显的进化动机。同时,人工神经网络(ANN)在一系列任务和域中学习的能力,组合和重新使用所需的学习表现,是人工智能的明确目标。这种能力被广泛描述为持续学习,已成为机器学习研究的多产子场。尽管近年来近年来深度学习的众多成功,但跨越域名从图像识别到机器翻译,因此这种持续的任务学习已经证明了具有挑战性的。在具有随机梯度下降的序列上训练的神经网络通常遭受代表性干扰,由此给定任务的学习权重有效地覆盖了在灾难性遗忘的过程中的先前任务的权重。这代表了对更广泛的人工学习系统发展的主要障碍,能够以类似于人类的方式积累时间和任务空间的知识。伴随的选定论文和实施存储库可以在https://github.com/mccaffary/continualualuallning找到。
translated by 谷歌翻译
Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a chronic problem called catastrophic forgetting.Although simply replaying all previous data alleviates the problem, it requires large memory and even worse, often infeasible in real world applications where the access to past data is limited. Inspired by the generative nature of the hippocampus as a short-term memory system in primate brain, we propose the Deep Generative Replay, a novel framework with a cooperative dual model architecture consisting of a deep generative model ("generator") and a task solving model ("solver"). With only these two models, training data for previous tasks can easily be sampled and interleaved with those for a new task. We test our methods in several sequential learning settings involving image classification tasks.
translated by 谷歌翻译
在不失去先前学习的情况下学习新任务和技能(即灾难性遗忘)是人为和生物神经网络的计算挑战,但是人工系统努力与其生物学类似物达成平等。哺乳动物的大脑采用众多神经手术来支持睡眠期间的持续学习。这些是人工适应的成熟。在这里,我们研究了建模哺乳动物睡眠的三个不同组成部分如何影响人工神经网络中的持续学习:(1)在非比型眼运动(NREM)睡眠期间观察到的垂直记忆重播过程; (2)链接到REM睡眠的生成记忆重播过程; (3)已提出的突触降压过程,以调整信噪比和支持神经保养。在评估持续学习CIFAR-100图像分类基准上的性能时,我们发现将所有三个睡眠组件的包含在内。在以后的任务期间,训练和灾难性遗忘在训练过程中提高了最高准确性。尽管某些灾难性遗忘在网络培训过程中持续存在,但更高水平的突触缩减水平会导致更好地保留早期任务,并进一步促进随后培训期间早期任务准确性的恢复。一个关键的要点是,在考虑使用突触缩小范围的水平时,手头有一个权衡 - 更具侵略性的缩减更好地保护早期任务,但较少的缩减可以增强学习新任务的能力。中级水平可以在训练过程中与最高的总体精度达到平衡。总体而言,我们的结果都提供了有关如何适应睡眠组件以增强人工连续学习系统的洞察力,并突出了未来神经科学睡眠研究的领域,以进一步进一步进行此类系统。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
translated by 谷歌翻译
持续学习的目标(CL)是随着时间的推移学习不同的任务。与CL相关的主要Desiderata是在旧任务上保持绩效,利用后者来改善未来任务的学习,并在培训过程中引入最小的开销(例如,不需要增长的模型或再培训)。我们建议通过固定密度的稀疏神经网络来解决这些避难所的神经启发性塑性适应(NISPA)体系结构。 NISPA形成了稳定的途径,可以从较旧的任务中保存知识。此外,NISPA使用连接重新设计来创建新的塑料路径,以重用有关新任务的现有知识。我们对EMNIST,FashionMnist,CIFAR10和CIFAR100数据集的广泛评估表明,NISPA的表现明显胜过代表性的最先进的持续学习基线,并且与盆地相比,它的可学习参数最多少了十倍。我们还认为稀疏是持续学习的重要组成部分。 NISPA代码可在https://github.com/burakgurbuz97/nispa上获得。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
本文研究了在连续学习框架中使用分类网络的固定架构培训深度学习模型的优化算法的新设计。训练数据是非平稳的,非平稳性是由一系列不同的任务施加的。我们首先分析了一个仅在隔离的学习任务的深层模型,并在网络参数空间中识别一个区域,其中模型性能接近恢复的最佳。我们提供的经验证据表明该区域类似于沿收敛方向扩展的锥体。我们研究了融合后优化器轨迹的主要方向,并表明沿着一些顶级主要方向旅行可以迅速将参数带到锥体之外,但其余方向并非如此。我们认为,当参数被限制以保持在训练过程中迄今为止遇到的单个任务的相交中,可以缓解持续学习环境中的灾难性遗忘。基于此观察结果,我们介绍了我们的方向约束优化(DCO)方法,在每个任务中,我们引入一个线性自动编码器以近似其相应的顶部禁止主要方向。然后将它们以正规化术语的形式合并到损失函数中,以便在不忘记的情况下学习即将到来的任务。此外,为了随着任务数量的增加而控制内存的增长,我们提出了一种称为压缩DCO(DCO-comp)的算法的内存效率版本,该版本为存储所有自动编码器的固定大小分配了存储器。我们从经验上证明,与其他基于最新正规化的持续学习方法相比,我们的算法表现出色。
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译
凭借持续学习的能力,人类可以在整个生命周期中不断获得知识。但是,一般而言,计算系统不能顺序学习任务。对深神经网络(DNN)的长期挑战称为灾难性遗忘。已经提出了多种解决方案来克服这一限制。本文对内存重播方法进行了深入的评估,从而探讨了选择重播数据时各种采样策略的效率,性能和可扩展性。所有实验均在各个域下的多个数据集上进行。最后,提供了为各种数据分布选择重播方法的实用解决方案。
translated by 谷歌翻译
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
在连续学习期间,人工神经网络(ANNS)经历灾难性的遗忘(CF)。相比之下,大脑可以在没有任何灾难性遗忘的迹象的情况下连续学习。尖峰神经网络(SNNS)是下一代ANN,具有从生物神经网络借入的许多功能。因此,SNNS可能希望更好地适应CF。在本文中,我们研究SNNS对CF的易感性,并测试几种用于减轻灾难性遗忘的生物启发方法。 SNNS受到基于Spike-Timing依赖的塑性(STDP)的生物合理的本地培训规则。本地培训禁止基于全局损失函数的梯度直接使用CF防御方法。我们开发并测试了该方法,以确定基于随机Langevin动态的突触(重量)的重要性,而无需梯度。还测试了一种从模拟神经网络改编的灾难性遗忘预防的其他几种方法。实验是在Spyketorch环境中自由的数据集进行的。
translated by 谷歌翻译