在不失去先前学习的情况下学习新任务和技能(即灾难性遗忘)是人为和生物神经网络的计算挑战,但是人工系统努力与其生物学类似物达成平等。哺乳动物的大脑采用众多神经手术来支持睡眠期间的持续学习。这些是人工适应的成熟。在这里,我们研究了建模哺乳动物睡眠的三个不同组成部分如何影响人工神经网络中的持续学习:(1)在非比型眼运动(NREM)睡眠期间观察到的垂直记忆重播过程; (2)链接到REM睡眠的生成记忆重播过程; (3)已提出的突触降压过程,以调整信噪比和支持神经保养。在评估持续学习CIFAR-100图像分类基准上的性能时,我们发现将所有三个睡眠组件的包含在内。在以后的任务期间,训练和灾难性遗忘在训练过程中提高了最高准确性。尽管某些灾难性遗忘在网络培训过程中持续存在,但更高水平的突触缩减水平会导致更好地保留早期任务,并进一步促进随后培训期间早期任务准确性的恢复。一个关键的要点是,在考虑使用突触缩小范围的水平时,手头有一个权衡 - 更具侵略性的缩减更好地保护早期任务,但较少的缩减可以增强学习新任务的能力。中级水平可以在训练过程中与最高的总体精度达到平衡。总体而言,我们的结果都提供了有关如何适应睡眠组件以增强人工连续学习系统的洞察力,并突出了未来神经科学睡眠研究的领域,以进一步进一步进行此类系统。
translated by 谷歌翻译
我们引入了一种内部重播的新方法,该方法根据网络深度调节排练的频率。虽然重播策略减轻了神经网络中灾难性遗忘的影响,但最近对生成重播的作品表明,仅在网络的更深层次上进行排练才能改善持续学习的性能。但是,生成方法引入了其他计算开销,从而限制了其应用程序。通过观察到的神经网络的早期层次忘记忘记了,我们建议在重播过程中使用中级功能更新频率不同的网络层。这通过省略了发电机的更深层和主要模型的早期层来减少计算负担。我们命名我们的方法渐进式潜在重播,并表明它在使用较少的资源时表现优于内部重播。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
人类和其他动物的先天能力学习多样化,经常干扰,在整个寿命中的知识和技能范围是自然智能的标志,具有明显的进化动机。同时,人工神经网络(ANN)在一系列任务和域中学习的能力,组合和重新使用所需的学习表现,是人工智能的明确目标。这种能力被广泛描述为持续学习,已成为机器学习研究的多产子场。尽管近年来近年来深度学习的众多成功,但跨越域名从图像识别到机器翻译,因此这种持续的任务学习已经证明了具有挑战性的。在具有随机梯度下降的序列上训练的神经网络通常遭受代表性干扰,由此给定任务的学习权重有效地覆盖了在灾难性遗忘的过程中的先前任务的权重。这代表了对更广泛的人工学习系统发展的主要障碍,能够以类似于人类的方式积累时间和任务空间的知识。伴随的选定论文和实施存储库可以在https://github.com/mccaffary/continualualuallning找到。
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
由于其非参数化干扰和灾难性遗忘的非参数化能力,核心连续学习\ Cite {derakhshani2021kernel}最近被成为一个强大的持续学习者。不幸的是,它的成功是以牺牲一个明确的内存为代价来存储来自过去任务的样本,这妨碍了具有大量任务的连续学习设置的可扩展性。在本文中,我们介绍了生成的内核持续学习,探讨了生成模型与内核之间的协同作用以进行持续学习。生成模型能够生产用于内核学习的代表性样本,其消除了在内核持续学习中对内存的依赖性。此外,由于我们仅在生成模型上重播,我们避免了与在整个模型上需要重播的先前的方法相比,在计算上更有效的情况下避免任务干扰。我们进一步引入了监督的对比正规化,使我们的模型能够为更好的基于内核的分类性能产生更具辨别性样本。我们对三种广泛使用的连续学习基准进行了广泛的实验,展示了我们贡献的能力和益处。最值得注意的是,在具有挑战性的SplitCifar100基准测试中,只需一个简单的线性内核,我们获得了与内核连续学习的相同的准确性,对于内存的十分之一,或者对于相同的内存预算的10.1%的精度增益。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
持续学习的目标(CL)是随着时间的推移学习不同的任务。与CL相关的主要Desiderata是在旧任务上保持绩效,利用后者来改善未来任务的学习,并在培训过程中引入最小的开销(例如,不需要增长的模型或再培训)。我们建议通过固定密度的稀疏神经网络来解决这些避难所的神经启发性塑性适应(NISPA)体系结构。 NISPA形成了稳定的途径,可以从较旧的任务中保存知识。此外,NISPA使用连接重新设计来创建新的塑料路径,以重用有关新任务的现有知识。我们对EMNIST,FashionMnist,CIFAR10和CIFAR100数据集的广泛评估表明,NISPA的表现明显胜过代表性的最先进的持续学习基线,并且与盆地相比,它的可学习参数最多少了十倍。我们还认为稀疏是持续学习的重要组成部分。 NISPA代码可在https://github.com/burakgurbuz97/nispa上获得。
translated by 谷歌翻译
由于灾难性的遗忘,计算系统的持续学习是挑战。我们在果蝇嗅觉系统中发现了两个层神经循环,通过独特地组合稀疏编码和关联学习来解决这一挑战。在第一层中,使用稀疏,高尺寸表示来编码气味,这通过激活非重叠神经元的神经元以进行不同气味来减少内存干扰。在第二层中,在学习期间仅修改异味活性神经元和与气味相关的输出神经元之间的突触;冻结其余重量以防止不相关的存储器被覆盖。我们经验和分析显示,这种简单轻型的算法显着提高了不断的学习性能。飞行关联学习算法与经典的Perceptron学习算法引人注目,尽管我们表现出两种修改对于减少灾难性遗忘至关重要。总体而言,果蝇演变了一种有效的终身学习算法,可以转换来自神经科学的电路机制以改善机器计算。
translated by 谷歌翻译
Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a chronic problem called catastrophic forgetting.Although simply replaying all previous data alleviates the problem, it requires large memory and even worse, often infeasible in real world applications where the access to past data is limited. Inspired by the generative nature of the hippocampus as a short-term memory system in primate brain, we propose the Deep Generative Replay, a novel framework with a cooperative dual model architecture consisting of a deep generative model ("generator") and a task solving model ("solver"). With only these two models, training data for previous tasks can easily be sampled and interleaved with those for a new task. We test our methods in several sequential learning settings involving image classification tasks.
translated by 谷歌翻译
人类在整个生命周期中不断学习,通过积累多样化的知识并为未来的任务进行微调。当出现类似目标时,神经网络会遭受灾难性忘记,在学习过程中跨顺序任务跨好任务的数据分布是否不固定。解决此类持续学习(CL)问题的有效方法是使用超网络为目标网络生成任务依赖权重。但是,现有基于超网的方法的持续学习性能受到整个层之间权重的独立性的假设,以维持参数效率。为了解决这一限制,我们提出了一种新颖的方法,该方法使用依赖关系保留超网络来为目标网络生成权重,同时还保持参数效率。我们建议使用基于复发的神经网络(RNN)的超网络,该网络可以有效地生成层权重,同时允许在它们的依赖关系中。此外,我们为基于RNN的超网络提出了新颖的正则化和网络增长技术,以进一步提高持续的学习绩效。为了证明所提出的方法的有效性,我们对几个图像分类持续学习任务和设置进行了实验。我们发现,基于RNN HyperNetworks的建议方法在所有这些CL设置和任务中都优于基准。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
内存重播可能是在生物脑中学习的关键,这在没有灾难性地干扰以前的知识的情况下,必须不断地学习新任务。另一方面,人工神经网络遭受灾难性的遗忘,并且倾向于在最近训练的任务上表现出色。在这项工作中,我们使用人工神经网络探讨基于空间基于空间的内存重放的应用。我们能够通过在压缩潜在空间版本中仅存储一小部分原始数据来保持先前任务中的良好性能。
translated by 谷歌翻译
尽管人工神经网络(ANN)取得了重大进展,但其设计过程仍在臭名昭著,这主要取决于直觉,经验和反复试验。这个依赖人类的过程通常很耗时,容易出现错误。此外,这些模型通常与其训练环境绑定,而没有考虑其周围环境的变化。神经网络的持续适应性和自动化对于部署后模型可访问性的几个领域至关重要(例如,IoT设备,自动驾驶汽车等)。此外,即使是可访问的模型,也需要频繁的维护后部署后,以克服诸如概念/数据漂移之类的问题,这可能是繁琐且限制性的。当前关于自适应ANN的艺术状况仍然是研究的过早领域。然而,一种自动化和持续学习形式的神经体系结构搜索(NAS)最近在深度学习研究领域中获得了越来越多的动力,旨在提供更强大和适应性的ANN开发框架。这项研究是关于汽车和CL之间交集的首次广泛综述,概述了可以促进ANN中充分自动化和终身可塑性的不同方法的研究方向。
translated by 谷歌翻译
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译