Natural language interaction is a promising direction for democratizing 3D shape design. However, existing methods for text-driven 3D shape editing face challenges in producing decoupled, local edits to 3D shapes. We address this problem by learning disentangled latent representations that ground language in 3D geometry. To this end, we propose a complementary tool set including a novel network architecture, a disentanglement loss, and a new editing procedure. Additionally, to measure edit locality, we define a new metric that we call part-wise edit precision. We show that our method outperforms existing SOTA methods by 20% in terms of edit locality, and up to 6.6% in terms of language reference resolution accuracy. Our work suggests that by solely disentangling language representations, downstream 3D shape editing can become more local to relevant parts, even if the model was never given explicit part-based supervision.
translated by 谷歌翻译
深层生成模型通过自动化基于收集的数据集的多样性,现实内容的综合,使新手用户更容易访问视觉内容。但是,当前的机器学习方法错过了创作过程的关键要素 - 综合远远超出数据分配和日常体验的东西的能力。为了开始解决此问题,我们可以通过仅编辑一些具有所需几何变化的原始模型输出来“扭曲”给定模型。我们的方法将低级更新应用于单个模型层以重建编辑的示例。此外,为了打击过度拟合,我们建议一种基于样式混合的潜在空间增强方法。我们的方法允许用户创建一个模型,该模型可以通过定义的几何更改合成无尽的对象,从而可以创建新的生成模型,而无需策划大规模数据集。我们还证明可以组成编辑的模型以实现汇总效果,并提出了一个交互式界面,以使用户能够通过组合创建新的模型。对多个测试案例的经验测量表明,我们方法对最近的GAN微调方法的优势。最后,我们使用编辑的模型展示了多个应用程序,包括潜在空间插值和图像编辑。
translated by 谷歌翻译
用于形状生成和编辑的AutoEncoders的使用遭受了可能导致输出形状不可预测的变化的潜在空间中的操纵。我们介绍了一种基于AutoEncoder的方法,通过解开潜在的子空间来获得潜在空间的直观形状,以获得可以独立操纵的表面和样式变量的控制点。关键思想是向损耗函数添加一个LipsChitz型约束,即将输出形状的变化与潜在空间的变化相结合,导致可解释的潜在空间表示。然后可以自由地移动表面上的控制点,允许直接在潜空间中直接编辑。我们通过将其与最先进的数据驱动的形状编辑方法进行比较来评估我们的方法。除了形状操纵外,我们通过利用他们为无监督的部分分割来展示我们的控制点的表现力。
translated by 谷歌翻译
我们呈现剪辑NERF,一种用于神经辐射字段(NERF)的多模态3D对象操纵方法。通过利用近期对比语言图像预培训(剪辑)模型的联合语言图像嵌入空间,我们提出了一个统一的框架,它允许以用户友好的方式操纵nerf,使用短文本提示或示例图像。具体地,为了结合NERF的新型视图合成能力以及从生成模型的潜在表示的可控操纵能力,我们引入了一种允许单独控制形状和外观的脱屑的条件NERF架构。这是通过通过将学习的变形字段应用于对体积渲染阶段的位置编码和延迟颜色调节来实现的来实现。要将这种解除潜在的潜在潜在表示到剪辑嵌入,我们设计了两个代码映射器,将剪辑嵌入为输入并更新潜在码以反映目标编辑。用基于剪辑的匹配损耗训练映射器,以确保操纵精度。此外,我们提出了一种逆优化方法,可以将输入图像精确地将输入图像投影到潜在码以进行操作以使在真实图像上进行编辑。我们在各种文本提示和示例图像上进行广泛的实验评估我们的方法,并为交互式编辑提供了直观的接口。我们的实现是在https://cassiepython.github.io/clipnerf/上获得的
translated by 谷歌翻译
利用Stylegan的表现力及其分离的潜在代码,现有方法可以实现对不同视觉属性的现实编辑,例如年龄和面部图像的性别。出现了一个有趣而又具有挑战性的问题:生成模型能否针对他们博学的先验进行反事实编辑?由于自然数据集中缺乏反事实样本,我们以文本驱动的方式研究了这个问题,并具有对比语言图像预言(剪辑),这些(剪辑)甚至可以为各种反事实概念提供丰富的语义知识。与内域操作不同,反事实操作需要更全面地剥削夹包含的语义知识,以及对编辑方向的更微妙的处理,以避免被卡在局部最低或不需要的编辑中。为此,我们设计了一种新颖的对比损失,该损失利用了预定义的夹子空间方向,从不同的角度将编辑指向所需的方向。此外,我们设计了一个简单而有效的方案,该方案将(目标文本)明确映射到潜在空间,并将其与潜在代码融合在一起,以进行有效的潜在代码优化和准确的编辑。广泛的实验表明,我们的设计在乘坐各种反事实概念的目标文本驾驶时,可以实现准确,现实的编辑。
translated by 谷歌翻译
可以训练生成模型,以从特定域中生成图像,仅由文本提示引导,而不看到任何图像?换句话说:可以将图像生成器“盲目地训练”吗?利用大规模对比语言图像预训练(CLIP)模型的语义力量,我们提出了一种文本驱动方法,允许将生成模型转移到新域,而无需收集单个图像。我们展示通过自然语言提示和几分钟的培训,我们的方法可以通过各种风格和形状的多种域调整发电机。值得注意的是,许多这些修改难以与现有方法达到困难或完全不可能。我们在广泛的域中进行了广泛的实验和比较。这些证明了我们方法的有效性,并表明我们的移动模型保持了对下游任务吸引的生成模型的潜在空间属性。
translated by 谷歌翻译
In this paper we present a novel multi-attribute face manipulation method based on textual descriptions. Previous text-based image editing methods either require test-time optimization for each individual image or are restricted to single attribute editing. Extending these methods to multi-attribute face image editing scenarios will introduce undesired excessive attribute change, e.g., text-relevant attributes are overly manipulated and text-irrelevant attributes are also changed. In order to address these challenges and achieve natural editing over multiple face attributes, we propose a new decoupling training scheme where we use group sampling to get text segments from same attribute categories, instead of whole complex sentences. Further, to preserve other existing face attributes, we encourage the model to edit the latent code of each attribute separately via an entropy constraint. During the inference phase, our model is able to edit new face images without any test-time optimization, even from complex textual prompts. We show extensive experiments and analysis to demonstrate the efficacy of our method, which generates natural manipulated faces with minimal text-irrelevant attribute editing. Code and pre-trained model will be released.
translated by 谷歌翻译
文本样式传输是自然语言生成中的重要任务,旨在控制生成的文本中的某些属性,例如礼貌,情感,幽默和许多其他特性。它在自然语言处理领域拥有悠久的历史,最近由于深神经模型带来的有希望的性能而重大关注。在本文中,我们对神经文本转移的研究进行了系统调查,自2017年首次神经文本转移工作以来跨越100多个代表文章。我们讨论了任务制定,现有数据集和子任务,评估,以及丰富的方法在存在并行和非平行数据存在下。我们还提供关于这项任务未来发展的各种重要主题的讨论。我们的策据纸张列表在https://github.com/zhijing-jin/text_style_transfer_survey
translated by 谷歌翻译
近年来,文本的风格特性吸引了计算语言学研究人员。具体来说,研究人员研究了文本样式转移(TST)任务,该任务旨在在保留其样式独立内容的同时改变文本的风格属性。在过去的几年中,已经开发了许多新颖的TST算法,而该行业利用这些算法来实现令人兴奋的TST应用程序。由于这种共生,TST研究领域迅速发展。本文旨在对有关文本样式转移的最新研究工作进行全面审查。更具体地说,我们创建了一种分类法来组织TST模型,并提供有关最新技术状况的全面摘要。我们回顾了针对TST任务的现有评估方法,并进行了大规模的可重复性研究,我们在两个公开可用的数据集上实验基准了19个最先进的TST TST算法。最后,我们扩展了当前趋势,并就TST领域的新开发发展提供了新的观点。
translated by 谷歌翻译
由于其语义上的理解和用户友好的可控性,通过三维引导,通过三维引导的面部图像操纵已广泛应用于各种交互式场景。然而,现有的基于3D形式模型的操作方法不可直接适用于域名面,例如非黑色素化绘画,卡通肖像,甚至是动物,主要是由于构建每个模型的强大困难具体面部域。为了克服这一挑战,据我们所知,我们建议使用人为3DMM操纵任意域名的第一种方法。这是通过两个主要步骤实现的:1)从3DMM参数解开映射到潜在的STYLEGO2的潜在空间嵌入,可确保每个语义属性的解除响应和精确的控制; 2)通过实施一致的潜空间嵌入,桥接域差异并使人类3DMM适用于域外面的人类3DMM。实验和比较展示了我们高质量的语义操作方法在各种面部域中的优越性,所有主要3D面部属性可控姿势,表达,形状,反照镜和照明。此外,我们开发了直观的编辑界面,以支持用户友好的控制和即时反馈。我们的项目页面是https://cassiepython.github.io/cddfm3d/index.html
translated by 谷歌翻译
Stylegan的成功使得在合成和真实图像上启用了前所未有的语义编辑能力。然而,这种编辑操作要么是使用人类指导的语义监督或描述的培训。在另一个开发中,剪辑架构已被互联网级图像和文本配对培训,并且已被示出在几个零拍摄学习设置中有用。在这项工作中,我们调查了如何有效地链接样式登录和剪辑的预训练潜空间,这反过来允许我们从Stylegan,查找和命名有意义的编辑操作自动提取语义标记的编辑方向,而无需任何额外的人类指导。从技术上讲,我们提出了两块新颖的建筑块;一个用于查找有趣的夹子方向,一个用于在CLIP潜在空间中标记任意方向。安装程序不假设任何预定的标签,因此我们不需要任何其他监督文本/属性来构建编辑框架。我们评估所提出的方法的有效性,并证明了解标记标记的样式编辑方向的提取确实可能,并揭示了有趣和非琐碎的编辑方向。
translated by 谷歌翻译
最近在图像编辑中找到了生成的对抗网络(GANS)。但是,大多数基于GaN的图像编辑方法通常需要具有用于训练的语义分段注释的大规模数据集,只提供高级控制,或者仅在不同图像之间插入。在这里,我们提出了EditGan,一种用于高质量,高精度语义图像编辑的新方法,允许用户通过修改高度详细的部分分割面罩,例如,为汽车前灯绘制新掩模来编辑图像。编辑登上的GAN框架上建立联合模型图像及其语义分割,只需要少数标记的示例,使其成为编辑的可扩展工具。具体地,我们将图像嵌入GaN潜在空间中,并根据分割编辑执行条件潜代码优化,这有效地修改了图像。算优化优化,我们发现在实现编辑的潜在空间中找到编辑向量。该框架允许我们学习任意数量的编辑向量,然后可以直接应用于交互式速率的其他图像。我们通过实验表明,EditGan可以用前所未有的细节和自由来操纵图像,同时保留完整的图像质量。我们还可以轻松地组合多个编辑并执行超出EditGan训练数据的合理编辑。我们在各种图像类型上展示编辑,并定量优于标准编辑基准任务的几种先前编辑方法。
translated by 谷歌翻译
We present 3D Highlighter, a technique for localizing semantic regions on a mesh using text as input. A key feature of our system is the ability to interpret "out-of-domain" localizations. Our system demonstrates the ability to reason about where to place non-obviously related concepts on an input 3D shape, such as adding clothing to a bare 3D animal model. Our method contextualizes the text description using a neural field and colors the corresponding region of the shape using a probability-weighted blend. Our neural optimization is guided by a pre-trained CLIP encoder, which bypasses the need for any 3D datasets or 3D annotations. Thus, 3D Highlighter is highly flexible, general, and capable of producing localizations on a myriad of input shapes. Our code is publicly available at https://github.com/threedle/3DHighlighter.
translated by 谷歌翻译
随着信息中的各种方式存在于现实世界中的各种方式,多式联信息之间的有效互动和融合在计算机视觉和深度学习研究中的多模式数据的创造和感知中起着关键作用。通过卓越的功率,在多式联运信息中建模互动,多式联运图像合成和编辑近年来已成为一个热门研究主题。与传统的视觉指导不同,提供明确的线索,多式联路指南在图像合成和编辑方面提供直观和灵活的手段。另一方面,该领域也面临着具有固有的模态差距的特征的几个挑战,高分辨率图像的合成,忠实的评估度量等。在本调查中,我们全面地阐述了最近多式联运图像综合的进展根据数据模型和模型架构编辑和制定分类。我们从图像合成和编辑中的不同类型的引导方式开始介绍。然后,我们描述了多模式图像综合和编辑方法,其具有详细的框架,包括生成的对抗网络(GAN),GaN反转,变压器和其他方法,例如NERF和扩散模型。其次是在多模式图像合成和编辑中广泛采用的基准数据集和相应的评估度量的综合描述,以及分析各个优点和限制的不同合成方法的详细比较。最后,我们为目前的研究挑战和未来的研究方向提供了深入了解。与本调查相关的项目可在HTTPS://github.com/fnzhan/mise上获得
translated by 谷歌翻译
学习了解连接自然语言的基础语言,是一个关键的研究区域。在接地语言习得中的事先工作主要集中在文本输入上。在这项工作中,我们展示了对配对的视觉感知和原始语音输入进行接地语言习得的可行性。这将允许从最终用户学习新的任务和环境的语言,从而减少对文本输入的依赖性,并且可能减轻广泛可用语音识别系统中发现的人口统计偏差的影响。我们利用最近在自我监督的语言表演模型中的工作,并表明学习的言论表示可以使语言接地系统更加包容,同时保持甚至增加一般性。
translated by 谷歌翻译
我们提出了ShapeCrafter,这是一个用于递归文本条件3D形状生成的神经网络。生成文本条件的3D形状的现有方法会消耗整个文本提示,以在一个步骤中生成3D形状。但是,人类倾向于递归描述形状,我们可能以初始描述开始,并根据中间结果逐步添加细节。为了捕获此递归过程,我们引入了一种生成以初始短语为条件的3D形状分布的方法,该方法随着添加更多短语而逐渐发展。由于现有的数据集不足以训练这种方法,因此我们提出了Text2Shape ++,这是一个支持递归形状生成的369K形状文本对的大数据集。为了捕获通常用于完善形状描述的本地细节,我们建立在矢量定量的深层隐式函数的基础上,从而产生高质量形状的分布。结果表明,我们的方法可以生成与文本描述一致的形状,并且随着添加更多短语,形状逐渐发展。我们的方法支持形状编辑,外推,并可以在人机合作中为创意设计提供新的应用程序。
translated by 谷歌翻译
Stone" "Mohawk hairstyle" "Without makeup" "Cute cat" "Lion" "Gothic church" * Equal contribution, ordered alphabetically. Code and video are available on https://github.com/orpatashnik/StyleCLIP
translated by 谷歌翻译
我们提出了快速的文本2stylegan,这是一种自然语言界面,可适应预先训练的甘体,以实现文本引导的人脸合成。利用对比性语言图像预训练(剪辑)的最新进展,在培训过程中不需要文本数据。Fast Text2Stylegan被配制为条件变异自动编码器(CVAE),可在测试时为生成的图像提供额外的控制和多样性。我们的模型在遇到新的文本提示时不需要重新训练或微调剂或剪辑。与先前的工作相反,我们不依赖于测试时间的优化,这使我们的方法数量级比先前的工作快。从经验上讲,在FFHQ数据集上,我们的方法提供了与先前的工作相比,自然语言描述中具有不同详细程度的自然语言描述中的图像。
translated by 谷歌翻译
Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results.
translated by 谷歌翻译