我们提出了ShapeCrafter,这是一个用于递归文本条件3D形状生成的神经网络。生成文本条件的3D形状的现有方法会消耗整个文本提示,以在一个步骤中生成3D形状。但是,人类倾向于递归描述形状,我们可能以初始描述开始,并根据中间结果逐步添加细节。为了捕获此递归过程,我们引入了一种生成以初始短语为条件的3D形状分布的方法,该方法随着添加更多短语而逐渐发展。由于现有的数据集不足以训练这种方法,因此我们提出了Text2Shape ++,这是一个支持递归形状生成的369K形状文本对的大数据集。为了捕获通常用于完善形状描述的本地细节,我们建立在矢量定量的深层隐式函数的基础上,从而产生高质量形状的分布。结果表明,我们的方法可以生成与文本描述一致的形状,并且随着添加更多短语,形状逐渐发展。我们的方法支持形状编辑,外推,并可以在人机合作中为创意设计提供新的应用程序。
translated by 谷歌翻译
Language is one of the primary means by which we describe the 3D world around us. While rapid progress has been made in text-to-2D-image synthesis, similar progress in text-to-3D-shape synthesis has been hindered by the lack of paired (text, shape) data. Moreover, extant methods for text-to-shape generation have limited shape diversity and fidelity. We introduce TextCraft, a method to address these limitations by producing high-fidelity and diverse 3D shapes without the need for (text, shape) pairs for training. TextCraft achieves this by using CLIP and using a multi-resolution approach by first generating in a low-dimensional latent space and then upscaling to a higher resolution, improving the fidelity of the generated shape. To improve shape diversity, we use a discrete latent space which is modelled using a bidirectional transformer conditioned on the interchangeable image-text embedding space induced by CLIP. Moreover, we present a novel variant of classifier-free guidance, which further improves the accuracy-diversity trade-off. Finally, we perform extensive experiments that demonstrate that TextCraft outperforms state-of-the-art baselines.
translated by 谷歌翻译
With the rising industrial attention to 3D virtual modeling technology, generating novel 3D content based on specified conditions (e.g. text) has become a hot issue. In this paper, we propose a new generative 3D modeling framework called Diffusion-SDF for the challenging task of text-to-shape synthesis. Previous approaches lack flexibility in both 3D data representation and shape generation, thereby failing to generate highly diversified 3D shapes conforming to the given text descriptions. To address this, we propose a SDF autoencoder together with the Voxelized Diffusion model to learn and generate representations for voxelized signed distance fields (SDFs) of 3D shapes. Specifically, we design a novel UinU-Net architecture that implants a local-focused inner network inside the standard U-Net architecture, which enables better reconstruction of patch-independent SDF representations. We extend our approach to further text-to-shape tasks including text-conditioned shape completion and manipulation. Experimental results show that Diffusion-SDF is capable of generating both high-quality and highly diversified 3D shapes that conform well to the given text descriptions. Diffusion-SDF has demonstrated its superiority compared to previous state-of-the-art text-to-shape approaches.
translated by 谷歌翻译
Diffusion models have shown great promise for image generation, beating GANs in terms of generation diversity, with comparable image quality. However, their application to 3D shapes has been limited to point or voxel representations that can in practice not accurately represent a 3D surface. We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder. This allows us to generate diverse and high quality 3D surfaces. We additionally show that we can condition our model on images or text to enable image-to-3D generation and text-to-3D generation using CLIP embeddings. Furthermore, adding noise to the latent codes of existing shapes allows us to explore shape variations.
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
Recent CLIP-guided 3D optimization methods, e.g., DreamFields and PureCLIPNeRF achieve great success in zero-shot text-guided 3D synthesis. However, due to the scratch training and random initialization without any prior knowledge, these methods usually fail to generate accurate and faithful 3D structures that conform to the corresponding text. In this paper, we make the first attempt to introduce the explicit 3D shape prior to CLIP-guided 3D optimization methods. Specifically, we first generate a high-quality 3D shape from input texts in the text-to-shape stage as the 3D shape prior. We then utilize it as the initialization of a neural radiance field and then optimize it with the full prompt. For the text-to-shape generation, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between images synthesized by the text-to-image model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, namely, Dream3D, is capable of generating imaginative 3D content with better visual quality and shape accuracy than state-of-the-art methods.
translated by 谷歌翻译
There is no settled universal 3D representation for geometry with many alternatives such as point clouds, meshes, implicit functions, and voxels to name a few. In this work, we present a new, compelling alternative for representing shapes using a sequence of cross-sectional closed loops. The loops across all planes form an organizational hierarchy which we leverage for autoregressive shape synthesis and editing. Loops are a non-local description of the underlying shape, as simple loop manipulations (such as shifts) result in significant structural changes to the geometry. This is in contrast to manipulating local primitives such as points in a point cloud or a triangle in a triangle mesh. We further demonstrate that loops are intuitive and natural primitive for analyzing and editing shapes, both computationally and for users.
translated by 谷歌翻译
3D shapes have complementary abstractions from low-level geometry to part-based hierarchies to languages, which convey different levels of information. This paper presents a unified framework to translate between pairs of shape abstractions: $\textit{Text}$ $\Longleftrightarrow$ $\textit{Point Cloud}$ $\Longleftrightarrow$ $\textit{Program}$. We propose $\textbf{Neural Shape Compiler}$ to model the abstraction transformation as a conditional generation process. It converts 3D shapes of three abstract types into unified discrete shape code, transforms each shape code into code of other abstract types through the proposed $\textit{ShapeCode Transformer}$, and decodes them to output the target shape abstraction. Point Cloud code is obtained in a class-agnostic way by the proposed $\textit{Point}$VQVAE. On Text2Shape, ShapeGlot, ABO, Genre, and Program Synthetic datasets, Neural Shape Compiler shows strengths in $\textit{Text}$ $\Longrightarrow$ $\textit{Point Cloud}$, $\textit{Point Cloud}$ $\Longrightarrow$ $\textit{Text}$, $\textit{Point Cloud}$ $\Longrightarrow$ $\textit{Program}$, and Point Cloud Completion tasks. Additionally, Neural Shape Compiler benefits from jointly training on all heterogeneous data and tasks.
translated by 谷歌翻译
我们为3D形状生成(称为SDF-Stylegan)提供了一种基于stylegan2的深度学习方法,目的是降低生成形状和形状集合之间的视觉和几何差异。我们将stylegan2扩展到3D世代,并利用隐式签名的距离函数(SDF)作为3D形状表示,并引入了两个新颖的全球和局部形状鉴别器,它们区分了真实和假的SDF值和梯度,以显着提高形状的几何形状和视觉质量。我们进一步补充了基于阴影图像的FR \'Echet Inception距离(FID)分数的3D生成模型的评估指标,以更好地评估生成形状的视觉质量和形状分布。对形状生成的实验证明了SDF-Stylegan比最先进的表现出色。我们进一步证明了基于GAN倒置的各种任务中SDF-Stylegan的功效,包括形状重建,部分点云的形状完成,基于单图像的形状形状生成以及形状样式编辑。广泛的消融研究证明了我们框架设计的功效。我们的代码和训练有素的模型可在https://github.com/zhengxinyang/sdf-stylegan上找到。
translated by 谷歌翻译
随着信息中的各种方式存在于现实世界中的各种方式,多式联信息之间的有效互动和融合在计算机视觉和深度学习研究中的多模式数据的创造和感知中起着关键作用。通过卓越的功率,在多式联运信息中建模互动,多式联运图像合成和编辑近年来已成为一个热门研究主题。与传统的视觉指导不同,提供明确的线索,多式联路指南在图像合成和编辑方面提供直观和灵活的手段。另一方面,该领域也面临着具有固有的模态差距的特征的几个挑战,高分辨率图像的合成,忠实的评估度量等。在本调查中,我们全面地阐述了最近多式联运图像综合的进展根据数据模型和模型架构编辑和制定分类。我们从图像合成和编辑中的不同类型的引导方式开始介绍。然后,我们描述了多模式图像综合和编辑方法,其具有详细的框架,包括生成的对抗网络(GAN),GaN反转,变压器和其他方法,例如NERF和扩散模型。其次是在多模式图像合成和编辑中广泛采用的基准数据集和相应的评估度量的综合描述,以及分析各个优点和限制的不同合成方法的详细比较。最后,我们为目前的研究挑战和未来的研究方向提供了深入了解。与本调查相关的项目可在HTTPS://github.com/fnzhan/mise上获得
translated by 谷歌翻译
Text-guided 3D object generation aims to generate 3D objects described by user-defined captions, which paves a flexible way to visualize what we imagined. Although some works have been devoted to solving this challenging task, these works either utilize some explicit 3D representations (e.g., mesh), which lack texture and require post-processing for rendering photo-realistic views; or require individual time-consuming optimization for every single case. Here, we make the first attempt to achieve generic text-guided cross-category 3D object generation via a new 3D-TOGO model, which integrates a text-to-views generation module and a views-to-3D generation module. The text-to-views generation module is designed to generate different views of the target 3D object given an input caption. prior-guidance, caption-guidance and view contrastive learning are proposed for achieving better view-consistency and caption similarity. Meanwhile, a pixelNeRF model is adopted for the views-to-3D generation module to obtain the implicit 3D neural representation from the previously-generated views. Our 3D-TOGO model generates 3D objects in the form of the neural radiance field with good texture and requires no time-cost optimization for every single caption. Besides, 3D-TOGO can control the category, color and shape of generated 3D objects with the input caption. Extensive experiments on the largest 3D object dataset (i.e., ABO) are conducted to verify that 3D-TOGO can better generate high-quality 3D objects according to the input captions across 98 different categories, in terms of PSNR, SSIM, LPIPS and CLIP-score, compared with text-NeRF and Dreamfields.
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
While recent work on text-conditional 3D object generation has shown promising results, the state-of-the-art methods typically require multiple GPU-hours to produce a single sample. This is in stark contrast to state-of-the-art generative image models, which produce samples in a number of seconds or minutes. In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU. Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image. While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases. We release our pre-trained point cloud diffusion models, as well as evaluation code and models, at https://github.com/openai/point-e.
translated by 谷歌翻译
随着几个行业正在朝着建模大规模的3D虚拟世界迈进,因此需要根据3D内容的数量,质量和多样性来扩展的内容创建工具的需求变得显而易见。在我们的工作中,我们旨在训练Parterant 3D生成模型,以合成纹理网格,可以通过3D渲染引擎直接消耗,因此立即在下游应用中使用。 3D生成建模的先前工作要么缺少几何细节,因此在它们可以生成的网格拓扑中受到限制,通常不支持纹理,或者在合成过程中使用神经渲染器,这使得它们在常见的3D软件中使用。在这项工作中,我们介绍了GET3D,这是一种生成模型,该模型直接生成具有复杂拓扑,丰富几何细节和高保真纹理的显式纹理3D网格。我们在可区分的表面建模,可区分渲染以及2D生成对抗网络中桥接了最新成功,以从2D图像集合中训练我们的模型。 GET3D能够生成高质量的3D纹理网格,从汽车,椅子,动物,摩托车和人类角色到建筑物,对以前的方法进行了重大改进。
translated by 谷歌翻译
In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, text, partially observed shapes and combinations of these, further allowing to adjust the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks, outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated shape using large-scale text-to-image models.
translated by 谷歌翻译
我们提出了第一个统一的框架Unicolor,以支持多种方式的着色,包括无条件和条件性的框架,例如中风,示例,文本,甚至是它们的混合。我们没有为每种类型的条件学习单独的模型,而是引入了一个两阶段的着色框架,以将各种条件纳入单个模型。在第一阶段,多模式条件将转换为提示点的共同表示。特别是,我们提出了一种基于剪辑的新方法,将文本转换为提示点。在第二阶段,我们提出了一个基于变压器的网络,该网络由Chroma-vqgan和Hybrid-Transformer组成,以生成以提示点为条件的多样化和高质量的着色结果。定性和定量比较都表明,我们的方法在每种控制方式中都优于最先进的方法,并进一步实现了以前不可行的多模式着色。此外,我们设计了一个交互式界面,显示了我们统一框架在实际用法中的有效性,包括自动着色,混合控制着色,局部再现和迭代色彩编辑。我们的代码和型号可在https://luckyhzt.github.io/unicolor上找到。
translated by 谷歌翻译
由于没有大型配对的文本形状数据,这两种方式之间的大量语义差距以及3D形状的结构复杂性,因此文本指导的3D形状生成仍然具有挑战性。本文通过引入2D图像作为垫脚石来连接两种方式并消除对配对的文本形状数据的需求,提出了一个名为“图像”的新框架,称为“垫脚石”(ISS)。我们的关键贡献是一种两阶段的功能空间对准方法,它通过利用具有多视图Supperions的预训练的单视重构造(SVR)模型来映射剪辑功能以形成形状:首先将剪辑图像剪辑剪辑功能到详细信息 - SVR模型中的丰富形状空间,然后将剪辑文本功能映射到形状空间,并通过鼓励输入文本和渲染图像之间的剪辑一致性来优化映射。此外,我们制定了一个文本制定的形状样式化模块,以用新颖的纹理打扮出输出形状。除了从文本上生成3D Shape生成的现有作品外,我们的新方法是在不需要配对的文本形状数据的情况下创建形状的一般性。实验结果表明,我们的方法在忠诚度和与文本一致性方面优于最先进的和我们的基线。此外,我们的方法可以通过逼真的和幻想结构和纹理对生成的形状进行样式化。
translated by 谷歌翻译
本地化隐式功能的最新进展使神经隐式表示能够可扩展到大型场景。然而,这些方法采用的3D空间的定期细分未能考虑到表面占用的稀疏性和几何细节的变化粒度。结果,其内存占地面积与输入体积均别较大,即使在适度密集的分解中也导致禁止的计算成本。在这项工作中,我们为3D表面,编码OCTFIELD提供了一种学习的分层隐式表示,允许具有低内存和计算预算的复杂曲面的高精度编码。我们方法的关键是仅在感兴趣的表面周围分发本地隐式功能的3D场景的自适应分解。我们通过引入分层Octree结构来实现这一目标,以根据表面占用和部件几何形状的丰富度自适应地细分3D空间。随着八十六是离散和不可分辨性的,我们进一步提出了一种新颖的等级网络,其模拟八偏细胞的细分作为概率的过程,并以可差的方式递归地编码和解码八叠结构和表面几何形状。我们展示了Octfield的一系列形状建模和重建任务的价值,显示出在替代方法方面的优越性。
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译