Diffusion models have shown great promise for image generation, beating GANs in terms of generation diversity, with comparable image quality. However, their application to 3D shapes has been limited to point or voxel representations that can in practice not accurately represent a 3D surface. We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder. This allows us to generate diverse and high quality 3D surfaces. We additionally show that we can condition our model on images or text to enable image-to-3D generation and text-to-3D generation using CLIP embeddings. Furthermore, adding noise to the latent codes of existing shapes allows us to explore shape variations.
translated by 谷歌翻译
本文提出了一种新的3D形状生成方法,从而在小波域中的连续隐式表示上实现了直接生成建模。具体而言,我们提出了一个带有一对粗糙和细节系数的紧凑型小波表示,通过截短的签名距离函数和多尺度的生物联盟波波隐式表示3D形状,并制定了一对神经网络:基于生成器基于扩散模型的生成器以粗糙系数的形式产生不同的形状;以及一个细节预测因子,以进一步生成兼容的细节系数量,以丰富具有精细结构和细节的生成形状。定量和定性实验结果都表现出我们的方法在产生具有复杂拓扑和结构,干净表面和细节的多样化和高质量形状方面的优势,超过了最先进的模型的3D生成能力。
translated by 谷歌翻译
While recent work on text-conditional 3D object generation has shown promising results, the state-of-the-art methods typically require multiple GPU-hours to produce a single sample. This is in stark contrast to state-of-the-art generative image models, which produce samples in a number of seconds or minutes. In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU. Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image. While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases. We release our pre-trained point cloud diffusion models, as well as evaluation code and models, at https://github.com/openai/point-e.
translated by 谷歌翻译
Diffusion models have emerged as the state-of-the-art for image generation, among other tasks. Here, we present an efficient diffusion-based model for 3D-aware generation of neural fields. Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields and factoring them into a set of axis-aligned triplane feature representations. Thus, our 3D training scenes are all represented by 2D feature planes, and we can directly train existing 2D diffusion models on these representations to generate 3D neural fields with high quality and diversity, outperforming alternative approaches to 3D-aware generation. Our approach requires essential modifications to existing triplane factorization pipelines to make the resulting features easy to learn for the diffusion model. We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
translated by 谷歌翻译
In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, text, partially observed shapes and combinations of these, further allowing to adjust the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks, outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated shape using large-scale text-to-image models.
translated by 谷歌翻译
With the rising industrial attention to 3D virtual modeling technology, generating novel 3D content based on specified conditions (e.g. text) has become a hot issue. In this paper, we propose a new generative 3D modeling framework called Diffusion-SDF for the challenging task of text-to-shape synthesis. Previous approaches lack flexibility in both 3D data representation and shape generation, thereby failing to generate highly diversified 3D shapes conforming to the given text descriptions. To address this, we propose a SDF autoencoder together with the Voxelized Diffusion model to learn and generate representations for voxelized signed distance fields (SDFs) of 3D shapes. Specifically, we design a novel UinU-Net architecture that implants a local-focused inner network inside the standard U-Net architecture, which enables better reconstruction of patch-independent SDF representations. We extend our approach to further text-to-shape tasks including text-conditioned shape completion and manipulation. Experimental results show that Diffusion-SDF is capable of generating both high-quality and highly diversified 3D shapes that conform well to the given text descriptions. Diffusion-SDF has demonstrated its superiority compared to previous state-of-the-art text-to-shape approaches.
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
Recent CLIP-guided 3D optimization methods, e.g., DreamFields and PureCLIPNeRF achieve great success in zero-shot text-guided 3D synthesis. However, due to the scratch training and random initialization without any prior knowledge, these methods usually fail to generate accurate and faithful 3D structures that conform to the corresponding text. In this paper, we make the first attempt to introduce the explicit 3D shape prior to CLIP-guided 3D optimization methods. Specifically, we first generate a high-quality 3D shape from input texts in the text-to-shape stage as the 3D shape prior. We then utilize it as the initialization of a neural radiance field and then optimize it with the full prompt. For the text-to-shape generation, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between images synthesized by the text-to-image model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, namely, Dream3D, is capable of generating imaginative 3D content with better visual quality and shape accuracy than state-of-the-art methods.
translated by 谷歌翻译
We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.
translated by 谷歌翻译
随着几个行业正在朝着建模大规模的3D虚拟世界迈进,因此需要根据3D内容的数量,质量和多样性来扩展的内容创建工具的需求变得显而易见。在我们的工作中,我们旨在训练Parterant 3D生成模型,以合成纹理网格,可以通过3D渲染引擎直接消耗,因此立即在下游应用中使用。 3D生成建模的先前工作要么缺少几何细节,因此在它们可以生成的网格拓扑中受到限制,通常不支持纹理,或者在合成过程中使用神经渲染器,这使得它们在常见的3D软件中使用。在这项工作中,我们介绍了GET3D,这是一种生成模型,该模型直接生成具有复杂拓扑,丰富几何细节和高保真纹理的显式纹理3D网格。我们在可区分的表面建模,可区分渲染以及2D生成对抗网络中桥接了最新成功,以从2D图像集合中训练我们的模型。 GET3D能够生成高质量的3D纹理网格,从汽车,椅子,动物,摩托车和人类角色到建筑物,对以前的方法进行了重大改进。
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
我们为3D形状生成(称为SDF-Stylegan)提供了一种基于stylegan2的深度学习方法,目的是降低生成形状和形状集合之间的视觉和几何差异。我们将stylegan2扩展到3D世代,并利用隐式签名的距离函数(SDF)作为3D形状表示,并引入了两个新颖的全球和局部形状鉴别器,它们区分了真实和假的SDF值和梯度,以显着提高形状的几何形状和视觉质量。我们进一步补充了基于阴影图像的FR \'Echet Inception距离(FID)分数的3D生成模型的评估指标,以更好地评估生成形状的视觉质量和形状分布。对形状生成的实验证明了SDF-Stylegan比最先进的表现出色。我们进一步证明了基于GAN倒置的各种任务中SDF-Stylegan的功效,包括形状重建,部分点云的形状完成,基于单图像的形状形状生成以及形状样式编辑。广泛的消融研究证明了我们框架设计的功效。我们的代码和训练有素的模型可在https://github.com/zhengxinyang/sdf-stylegan上找到。
translated by 谷歌翻译
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to represent and generate 3D shapes, as well as a vast number of use cases. However, single-view reconstruction remains a challenging topic that can unlock various interesting use cases such as interactive design. In this work, we propose a novel framework that leverages the intermediate latent spaces of Vision Transformer (ViT) and a joint image-text representational model, CLIP, for fast and efficient Single View Reconstruction (SVR). More specifically, we propose a novel mapping network architecture that learns a mapping between deep features extracted from ViT and CLIP, and the latent space of a base 3D generative model. Unlike previous work, our method enables view-agnostic reconstruction of 3D shapes, even in the presence of large occlusions. We use the ShapeNetV2 dataset and perform extensive experiments with comparisons to SOTA methods to demonstrate our method's effectiveness.
translated by 谷歌翻译
This paper presents a 3D generative model that uses diffusion models to automatically generate 3D digital avatars represented as neural radiance fields. A significant challenge in generating such avatars is that the memory and processing costs in 3D are prohibitive for producing the rich details required for high-quality avatars. To tackle this problem we propose the roll-out diffusion network (Rodin), which represents a neural radiance field as multiple 2D feature maps and rolls out these maps into a single 2D feature plane within which we perform 3D-aware diffusion. The Rodin model brings the much-needed computational efficiency while preserving the integrity of diffusion in 3D by using 3D-aware convolution that attends to projected features in the 2D feature plane according to their original relationship in 3D. We also use latent conditioning to orchestrate the feature generation for global coherence, leading to high-fidelity avatars and enabling their semantic editing based on text prompts. Finally, we use hierarchical synthesis to further enhance details. The 3D avatars generated by our model compare favorably with those produced by existing generative techniques. We can generate highly detailed avatars with realistic hairstyles and facial hair like beards. We also demonstrate 3D avatar generation from image or text as well as text-guided editability.
translated by 谷歌翻译
深度生成模型的最新进展导致了3D形状合成的巨大进展。虽然现有模型能够合成表示为体素,点云或隐式功能的形状,但这些方法仅间接强制执行最终3D形状表面的合理性。在这里,我们提出了一种直接将对抗训练施加到物体表面的3D形状合成框架(Surfgen)。我们的方法使用可分解的球面投影层来捕获并表示隐式3D发生器的显式零IsoSurface作为在单元球上定义的功能。通过在对手设置中用球形CNN处理3D对象表面的球形表示,我们的发电机可以更好地学习自然形状表面的统计数据。我们在大规模形状数据集中评估我们的模型,并证明了端到端训练的模型能够产生具有不同拓扑的高保真3D形状。
translated by 谷歌翻译
Diffusion models have emerged as a powerful tool for point cloud generation. A key component that drives the impressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of learning steps has limited its applications to many 3D real-world. To address this limitation, we propose Point Straight Flow (PSF), a model that exhibits impressive performance using one step. Our idea is based on the reformulation of the standard diffusion model, which optimizes the curvy learning trajectory into a straight path. Further, we develop a distillation strategy to shorten the straight path into one step without a performance loss, enabling applications to 3D real-world with latency constraints. We perform evaluations on multiple 3D tasks and find that our PSF performs comparably to the standard diffusion model, outperforming other efficient 3D point cloud generation methods. On real-world applications such as point cloud completion and training-free text-guided generation in a low-latency setup, PSF performs favorably.
translated by 谷歌翻译
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality. Code and supplementary material are available at https://github.com/czq142857/implicit-decoder.
translated by 谷歌翻译
allows us to train our model in the variational inference framework. Empirically, we demonstrate that PointFlow achieves state-of-the-art performance in point cloud generation. We additionally show that our model can faithfully reconstruct point clouds and learn useful representations in an unsupervised manner. The code is available at https: //github.com/stevenygd/PointFlow.
translated by 谷歌翻译
Implicit fields have been very effective to represent and learn 3D shapes accurately. Signed distance fields and occupancy fields are the preferred representations, both with well-studied properties, despite their restriction to closed surfaces. Several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet fundamental representation by considering the unit vector field defined on 3D space: at each point in $\mathbb{R}^3$ the vector points to the closest point on the surface. We theoretically demonstrate that this vector field can be easily transformed to surface density by applying the vector field divergence. Unlike other standard representations, it directly encodes an important physical property of the surface, which is the surface normal. We further show the advantages of our vector field representation, specifically in learning general (open, closed, or multi-layered) surfaces as well as piecewise planar surfaces. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. The code will be released at https://github.com/edomel/ImplicitVF
translated by 谷歌翻译
最近归一化流量(NFS)在建模3D点云上已经证明了最先进的性能,同时允许在推理时间以任意分辨率进行采样。然而,这些基于流的模型仍然需要长期训练时间和大型模型来代表复杂的几何形状。这项工作通过将NFS的混合物应用于点云来增强它们的代表性。我们展示在更普遍的框架中,每个组件都学会专门以完全无监督的方式专门化对象的特定子区域。通过将每个混合组件与相对小的NF实例化,我们通过更好的细节生成点云,而与基于单流量的模型相比,使用较少的参数,并且大大减少推理运行时。我们进一步证明通过添加数据增强,各个混合组件可以学习以语义有意义的方式专注。基于ShapEnet​​ DataSet评估NFS对生成,自动编码和单视重建的混合物。
translated by 谷歌翻译