最近归一化流量(NFS)在建模3D点云上已经证明了最先进的性能,同时允许在推理时间以任意分辨率进行采样。然而,这些基于流的模型仍然需要长期训练时间和大型模型来代表复杂的几何形状。这项工作通过将NFS的混合物应用于点云来增强它们的代表性。我们展示在更普遍的框架中,每个组件都学会专门以完全无监督的方式专门化对象的特定子区域。通过将每个混合组件与相对小的NF实例化,我们通过更好的细节生成点云,而与基于单流量的模型相比,使用较少的参数,并且大大减少推理运行时。我们进一步证明通过添加数据增强,各个混合组件可以学习以语义有意义的方式专注。基于ShapEnet​​ DataSet评估NFS对生成,自动编码和单视重建的混合物。
translated by 谷歌翻译
allows us to train our model in the variational inference framework. Empirically, we demonstrate that PointFlow achieves state-of-the-art performance in point cloud generation. We additionally show that our model can faithfully reconstruct point clouds and learn useful representations in an unsupervised manner. The code is available at https: //github.com/stevenygd/PointFlow.
translated by 谷歌翻译
标准化流(NFS)是灵活的显式生成模型,已被证明可以准确地对复杂的现实世界数据分布进行建模。但是,它们的可逆性限制对存在于嵌入较高维空间中的较低维歧管上的数据分布施加局限性。实际上,这种缺点通常通过在影响生成样品质量的数据中添加噪声来绕过。与先前的工作相反,我们通过从原始数据分布中生成样品来解决此问题,并有有关扰动分布和噪声模型的全部知识。为此,我们确定对受扰动数据训练的NFS隐式表示最大可能性区域中的歧管。然后,我们提出了一个优化目标,该目标从扰动分布中恢复了歧管上最有可能的点。最后,我们专注于我们利用NFS的明确性质的3D点云,即从对数似然梯度中提取的表面正态和对数类样本本身,将Poisson表面重建应用于精炼生成的点集。
translated by 谷歌翻译
Three-dimensional geometric data offer an excellent domain for studying representation learning and generative modeling. In this paper, we look at geometric data represented as point clouds. We introduce a deep AutoEncoder (AE) network with state-of-the-art reconstruction quality and generalization ability. The learned representations outperform existing methods on 3D recognition tasks and enable shape editing via simple algebraic manipulations, such as semantic part editing, shape analogies and shape interpolation, as well as shape completion. We perform a thorough study of different generative models including GANs operating on the raw point clouds, significantly improved GANs trained in the fixed latent space of our AEs, and Gaussian Mixture Models (GMMs). To quantitatively evaluate generative models we introduce measures of sample fidelity and diversity based on matchings between sets of point clouds. Interestingly, our evaluation of generalization, fidelity and diversity reveals that GMMs trained in the latent space of our AEs yield the best results overall.
translated by 谷歌翻译
We present a probabilistic model for point cloud generation, which is fundamental for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation. Inspired by the diffusion process in nonequilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath, which diffuse from the original distribution to a noise distribution. Point cloud generation thus amounts to learning the reverse diffusion process that transforms the noise distribution to the distribution of a desired shape. Specifically, we propose to model the reverse diffusion process for point clouds as a Markov chain conditioned on certain shape latent. We derive the variational bound in closed form for training and provide implementations of the model. Experimental results demonstrate that our model achieves competitive performance in point cloud generation and auto-encoding. The code is available at https://github.com/luost26/diffusionpoint-cloud.
translated by 谷歌翻译
Point Cloud升级旨在从给定的稀疏中产生密集的点云,这是一项具有挑战性的任务,这是由于点集的不规则和无序的性质。为了解决这个问题,我们提出了一种新型的基于深度学习的模型,称为PU-Flow,该模型结合了正常的流量和权重预测技术,以产生均匀分布在基础表面上的致密点。具体而言,我们利用标准化流的可逆特征来转换欧几里得和潜在空间之间的点,并将UPSMPLING过程作为潜在空间中相邻点的集合,从本地几何环境中自适应地学习。广泛的实验表明,我们的方法具有竞争力,并且在大多数测试用例中,它在重建质量,近距到表面的准确性和计算效率方面的表现优于最先进的方法。源代码将在https://github.com/unknownue/pu-flow上公开获得。
translated by 谷歌翻译
点云降级旨在从噪音和异常值损坏的原始观察结果中恢复清洁点云,同时保留细粒细节。我们提出了一种新型的基于深度学习的DeNoising模型,该模型结合了正常的流量和噪声解散技术,以实现高降解精度。与提取点云特征以进行点校正的现有作品不同,我们从分布学习和特征分离的角度制定了denoising过程。通过将嘈杂的点云视为清洁点和噪声的联合分布,可以从将噪声对应物从潜在点表示中解​​散出来,而欧几里得和潜在空间之间的映射是通过标准化流量来建模的。我们评估了具有各种噪声设置的合成3D模型和现实世界数据集的方法。定性和定量结果表明,我们的方法表现优于先前的最先进的基于深度学习的方法。
translated by 谷歌翻译
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.
translated by 谷歌翻译
Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).
translated by 谷歌翻译
Diffusion models have shown great promise for image generation, beating GANs in terms of generation diversity, with comparable image quality. However, their application to 3D shapes has been limited to point or voxel representations that can in practice not accurately represent a 3D surface. We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder. This allows us to generate diverse and high quality 3D surfaces. We additionally show that we can condition our model on images or text to enable image-to-3D generation and text-to-3D generation using CLIP embeddings. Furthermore, adding noise to the latent codes of existing shapes allows us to explore shape variations.
translated by 谷歌翻译
随着几个行业正在朝着建模大规模的3D虚拟世界迈进,因此需要根据3D内容的数量,质量和多样性来扩展的内容创建工具的需求变得显而易见。在我们的工作中,我们旨在训练Parterant 3D生成模型,以合成纹理网格,可以通过3D渲染引擎直接消耗,因此立即在下游应用中使用。 3D生成建模的先前工作要么缺少几何细节,因此在它们可以生成的网格拓扑中受到限制,通常不支持纹理,或者在合成过程中使用神经渲染器,这使得它们在常见的3D软件中使用。在这项工作中,我们介绍了GET3D,这是一种生成模型,该模型直接生成具有复杂拓扑,丰富几何细节和高保真纹理的显式纹理3D网格。我们在可区分的表面建模,可区分渲染以及2D生成对抗网络中桥接了最新成功,以从2D图像集合中训练我们的模型。 GET3D能够生成高质量的3D纹理网格,从汽车,椅子,动物,摩托车和人类角色到建筑物,对以前的方法进行了重大改进。
translated by 谷歌翻译
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality. Code and supplementary material are available at https://github.com/czq142857/implicit-decoder.
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
本文通过学习的基于零件的自相似性解决了无监督的零件感知点云产生的问题。我们的SPA-VAE可为任何给定物体提供一组潜在的典型候选形状,以及每种此类候选形状的一组刚体转换,以在组装的对象中为一个或多个位置。通过这种方式,可以有效地组合在表面上的嘈杂样品,以估计单腿原型。当原始数据中存在基于零件的自相似性时,以这种方式共享数据会赋予许多优势:建模准确性,适当的自相似生成输出,闭塞的精确填充和模型简约。 Spa-vae是使用各种贝叶斯方法的端到端训练的,该方法使用Gumbel-Softmax Trick进行共享零件分配,并提供各种新颖的损失,以提供适当的电感偏见。对塑料的定量和定性分析证明了SPA-VAE的优势。
translated by 谷歌翻译
最近的生成机器学习模型的进展重新推出了密码猜测领域的研究兴趣。基于GAN的数据驱动密码猜测方法和深度潜变量模型的方法显示了令人印象深刻的泛化性能,并为密码猜测提供了引人注目的属性。在本文中,我们提出了Passflow,一种基于流的生成模型方法来猜测。基于流的模型允许精确的对数似然计算和优化,这实现了精确潜在的变量推断。此外,基于流的模型提供了有意义的潜在空间表示,这使得能够探索潜在空间和插值的特定子空间。我们展示了生成流量的适用性到密码猜测的背景下,脱离了主要限于图像生成的连续空间的流网络的先前应用。我们显示Passflow能够在使用培训集中的密码猜测任务中以前的最先进的GaN的方法,这是一个训练集,该训练集是小于前一体的训练集。此外,生成的样本的定性分析表明,通信流可以准确地模拟原始密码的分布,甚至是不匹配的样本非常类似于人类的密码。
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译
我们提出了Lidargen,这是一种新型,有效且可控的生成模型,可产生逼真的LIDAR点云感觉读数。我们的方法利用强大的得分匹配基于能量的模型,并将点云生成过程作为随机降解过程在等应角视图中。该模型使我们能够采样具有保证的物理可行性和可控性的多样化和高质量点云样本。我们验证方法对挑战性Kitti-360和Nuscenes数据集的有效性。定量和定性结果表明,与其他生成模型相比,我们的方法产生的样本更现实。此外,LIDARGEN可以在不进行重新培训的情况下在输入上进行样本云。我们证明我们所提出的生成模型可直接用于致密激光点云。我们的代码可在以下网址找到:https://www.zyrianov.org/lidargen/
translated by 谷歌翻译
我们为3D点云提出了一种自我监督的胶囊架构。我们通过置换等级的注意力计算对象的胶囊分解,并通过用对随机旋转对象的对进行自我监督处理。我们的主要思想是将注意力掩码汇总为语义关键点,并使用这些来监督满足胶囊不变性/设备的分解。这不仅能够培训语义一致的分解,而且还允许我们学习一个能够以对客观的推理的规范化操作。培训我们的神经网络,我们既不需要分类标签也没有手动对齐训练数据集。然而,通过以自我监督方式学习以对象形式的表示,我们的方法在3D点云重建,规范化和无监督的分类上表现出最先进的。
translated by 谷歌翻译
Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications in 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
translated by 谷歌翻译
归一化的流提供了一种优雅的生成建模方法,可以有效地采样和确切的数据分布的密度评估。但是,当在低维歧管上支持数据分布或具有非平凡的拓扑结构时,当前技术的表现性有显着局限性。我们介绍了一个新的统计框架,用于学习局部正常流的混合物作为数据歧管上的“图表图”。我们的框架增强了最近方法的表现力,同时保留了标准化流的签名特性,他们承认了精确的密度评估。我们通过量化自动编码器(VQ-AE)学习了数据歧管图表的合适地图集,并使用条件流量学习了它们的分布。我们通过实验验证我们的概率框架可以使现有方法更好地模拟数据分布,而不是复杂的歧管。
translated by 谷歌翻译