Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).
translated by 谷歌翻译
本文介绍了学习3D表面类似地图集的表示的新技术,即从2D域到表面的同质形态转换。与先前的工作相比,我们提出了两项​​主要贡献。首先,我们没有通过优化作为高斯人的混合物来了解具有任意拓扑的连续2D域,而不是将固定的2D域(例如一组平方斑)映射到表面上。其次,我们在两个方向上学习一致的映射:图表,从3D表面到2D域,以及参数化,它们的倒数。我们证明,这可以提高学到的表面表示的质量,并在相关形状集合中的一致性。因此,它导致了应用程序的改进,例如对应估计,纹理传输和一致的UV映射。作为额外的技术贡献,我们概述了,尽管合并正常的一致性具有明显的好处,但它会导致优化问题,并且可以使用简单的排斥正则化来缓解这些问题。我们证明我们的贡献比现有基线提供了更好的表面表示。
translated by 谷歌翻译
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality. Code and supplementary material are available at https://github.com/czq142857/implicit-decoder.
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
近年来,由于其表达力和灵活性,神经隐式表示在3D重建中获得了普及。然而,神经隐式表示的隐式性质导致缓慢的推理时间并且需要仔细初始化。在本文中,我们重新审视经典且无处不在的点云表示,并使用泊松表面重建(PSR)的可分辨率配方引入可分化的点对网格层,其允许给予定向的GPU加速的指示灯的快速解决方案点云。可微分的PSR层允许我们通过隐式指示器字段有效地和分散地桥接与3D网格的显式3D点表示,从而实现诸如倒角距离的表面重建度量的端到端优化。因此,点和网格之间的这种二元性允许我们以面向点云表示形状,这是显式,轻量级和富有表现力的。与神经内隐式表示相比,我们的形状 - 点(SAP)模型更具可解释,轻量级,并通过一个级别加速推理时间。与其他显式表示相比,如点,补丁和网格,SA​​P产生拓扑无关的水密歧管表面。我们展示了SAP对无知点云和基于学习的重建的表面重建任务的有效性。
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which coordinates of spatial points are captured in colors of image pixels. \mr{Intuitively, Flattening-Net implicitly approximates a locally smooth 3D-to-2D surface flattening process while effectively preserving neighborhood consistency.} \mr{As a generic representation modality, PGI inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation.} To demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve \mr{diverse types of high-level and low-level} downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors. We will make the code and data publicly available at https://github.com/keeganhk/Flattening-Net.
translated by 谷歌翻译
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to represent and generate 3D shapes, as well as a vast number of use cases. However, single-view reconstruction remains a challenging topic that can unlock various interesting use cases such as interactive design. In this work, we propose a novel framework that leverages the intermediate latent spaces of Vision Transformer (ViT) and a joint image-text representational model, CLIP, for fast and efficient Single View Reconstruction (SVR). More specifically, we propose a novel mapping network architecture that learns a mapping between deep features extracted from ViT and CLIP, and the latent space of a base 3D generative model. Unlike previous work, our method enables view-agnostic reconstruction of 3D shapes, even in the presence of large occlusions. We use the ShapeNetV2 dataset and perform extensive experiments with comparisons to SOTA methods to demonstrate our method's effectiveness.
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
最近对隐含形状表示的兴趣日益增长。与明确的陈述相反,他们没有解决局限性,他们很容易处理各种各样的表面拓扑。为了了解这些隐式表示,电流方法依赖于一定程度的形状监督(例如,内部/外部信息或距离形状知识),或者至少需要密集点云(以近似距离 - 到 - 到 - 形状)。相比之下,我们介绍{\方法},一种用于学习形状表示的自我监督方法,从可能极其稀疏的点云。就像在水牛的针问题一样,我们在点云上“掉落”(样本)针头,认为,静统计地靠近表面,针端点位于表面的相对侧。不需要形状知识,点云可以高稀疏,例如,作为车辆获取的Lidar点云。以前的自我监督形状表示方法未能在这种数据上产生良好的结果。我们获得定量结果与现有的形状重建数据集上现有的监督方法标准,并在Kitti等硬自动驾驶数据集中显示有前途的定性结果。
translated by 谷歌翻译
显式神经表面表示可以在任意精度上精确有效地提取编码表面,以及差异几何特性(例如表面正常和曲率)的分析推导。这种理想的属性在其隐式对应物中没有,使其非常适合计算机视觉,图形和机器人技术中的各种应用。但是,SOTA的作品在可以有效描述的拓扑结构方面受到限制,它引入了重建复杂表面和模型效率的失真。在这项工作中,我们提出了最小的神经图集,这是一种新型基于地图集的显式神经表面表示。从其核心处是一个完全可学习的参数域,由在参数空间的开放正方形上定义的隐式概率占用字段给出。相比之下,先前的工作通常预定了参数域。附加的灵活性使图表能够允许任意拓扑和边界。因此,我们的表示形式可以学习3个图表的最小地图集,这些图表对任意拓扑表面的表面(包括具有任意连接的组件的闭合和开放表面),具有变形最小的参数化。我们的实验支持了这一假设,并表明我们的重建在整体几何形状方面更为准确,这是由于对拓扑和几何形状的关注所分离。
translated by 谷歌翻译
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learningbased 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
translated by 谷歌翻译
Shape completion, the problem of estimating the complete geometry of objects from partial observations, lies at the core of many vision and robotics applications. In this work, we propose Point Completion Network (PCN), a novel learning-based approach for shape completion. Unlike existing shape completion methods, PCN directly operates on raw point clouds without any structural assumption (e.g. symmetry) or annotation (e.g. semantic class) about the underlying shape. It features a decoder design that enables the generation of fine-grained completions while maintaining a small number of parameters. Our experiments show that PCN produces dense, complete point clouds with realistic structures in the missing regions on inputs with various levels of incompleteness and noise, including cars from LiDAR scans in the KITTI dataset. Code, data and trained models are available at https://wentaoyuan.github.io/pcn.
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们提出了一种从一系列时间演化点云序列中对时间一致的表面序列的无监督重建的方法。它在帧之间产生了密集和语义有意义的对应关系。我们将重建的表面代表由神经网络计算的Atlases,这使我们能够在帧之间建立对应关系。使这些对应关系的关键是语义上有意义的是为了保证在相应点计算的度量张量和尽可能相似。我们设计了一种优化策略,使我们的方法能够强大地对噪声和全局动作,而无需先验的对应关系或预先对准步骤。结果,我们的方法在几个具有挑战性的数据集中占据了最先进的。该代码可在https://github.com/bednarikjan/temporally_coherent_surface_reconstruction附近获得。
translated by 谷歌翻译
我们介绍DMTET,深度3D条件生成模型,可以使用诸如粗体素的简单用户指南来合成高分辨率3D形状。它通过利用新型混合3D表示来结婚隐式和显式3D表示的优点。与当前隐含的方法相比,培训涉及符号距离值,DMTET直接针对重建的表面进行了优化,这使我们能够用更少的伪像来合成更精细的几何细节。与直接生成诸如网格之类的显式表示的深度3D生成模型不同,我们的模型可以合成具有任意拓扑的形状。 DMTET的核心包括可变形的四面体网格,其编码离散的符号距离函数和可分行的行进Tetrahedra层,其将隐式符号距离表示转换为显式谱图表示。这种组合允许使用在表面网格上明确定义的重建和对抗性损耗来联合优化表面几何形状和拓扑以及生成细分层次结构。我们的方法显着优于来自粗体素输入的条件形状合成的现有工作,培训在复杂的3D动物形状的数据集上。项目页面:https://nv-tlabs.github.io/dmtet/
translated by 谷歌翻译