由于部分可观察性,高维视觉感知和延迟奖励,在MINECRAFT等开放世界游戏中的学习理性行为仍然是挑战,以便对加固学习(RL)研究造成挑战性,高维视觉感知和延迟奖励。为了解决这个问题,我们提出了一种具有代表学习和模仿学习的样本有效的等级RL方法,以应对感知和探索。具体来说,我们的方法包括两个层次结构,其中高级控制器学习控制策略来控制选项,低级工作人员学会解决每个子任务。为了提高子任务的学习,我们提出了一种技术组合,包括1)动作感知表示学习,其捕获了行动和表示之间的基础关系,2)基于鉴别者的自模仿学习,以实现有效的探索,以及3)合奏行为克隆一致性筛选政策鲁棒性。广泛的实验表明,Juewu-MC通过大边缘显着提高了样品效率并优于一组基线。值得注意的是,我们赢得了神经脂溢斯矿业锦标赛2021年研究竞赛的冠军,并实现了最高的绩效评分。
translated by 谷歌翻译
迷你竞赛旨在开发强化学习和模仿学习算法,可以有效地利用人类演示,大大减少了解复杂\ emph {获取德国}任务以稀疏奖励所需的环境交互的数量。为了解决挑战,在本文中,我们呈现\ textbf {seihai},a \ textbf {s} ample-\ textbf {e} ff \ textbf {e} ff \ textbf {i} cient \ textbf {h} ierrampf {h} ierraschical \ textbf {ai},充分利用人类示范和任务结构。具体而言,我们将任务分成几个顺序相关的子任务,并使用强化学习和模仿学习培训每个子任务的合适代理。我们进一步设计了一个调度程序,为自动为不同的子任务选择不同的代理。Seihai在Neurips-2020 Minerl竞赛中初步和最终的第一名。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
对看不见的环境变化的深入强化学习的概括通常需要对大量各种培训变化进行政策学习。我们从经验上观察到,接受过许多变化的代理商(通才)倾向于在一开始就更快地学习,但是长期以来其最佳水平的性能高原。相比之下,只接受一些变体培训的代理商(专家)通常可以在有限的计算预算下获得高回报。为了两全其美,我们提出了一个新颖的通才特权训练框架。具体来说,我们首先培训一名通才的所有环境变化。当它无法改善时,我们会推出大量的专家,并从通才克隆过重量,每个人都接受了训练,以掌握选定的一小部分变化子集。我们终于通过所有专家的示范引起的辅助奖励恢复了通才的培训。特别是,我们调查了开始专业培训的时机,并在专家的帮助下比较策略以学习通才。我们表明,该框架将政策学习的信封推向了包括Procgen,Meta-World和Maniskill在内的几个具有挑战性和流行的基准。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
模仿学习研究社区最近取得了重大进展,以使人工代理人仅凭视频演示模仿行为。然而,由于视频观察的高维质性质,针对此问题开发的当前最新方法表现出很高的样本复杂性。为了解决这个问题,我们在这里介绍了一种新的算法,称为使用状态观察者VGAIFO-SO从观察中获得的,称为视觉生成对抗性模仿。 Vgaifo-So以此为核心,试图使用一种新型的自我监管的状态观察者来解决样本效率低下,该观察者从高维图像中提供了较低维度的本体感受状态表示的估计。我们在几个连续的控制环境中进行了实验表明,Vgaifo-SO比其他IFO算法更有效地从仅视频演示中学习,有时甚至可以实现与观察(Gaifo)算法的生成对抗性模仿(Gaifo)算法的性能,该算法有特权访问访问权限示威者的本体感知状态信息。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
如何在演示相对较大时更加普遍地进行模仿学习一直是强化学习(RL)的持续存在问题。糟糕的示威活动导致狭窄和偏见的日期分布,非马洛维亚人类专家演示使代理商难以学习,而过度依赖子最优轨迹可以使代理商努力提高其性能。为了解决这些问题,我们提出了一种名为TD3FG的新算法,可以平稳地过渡从专家到学习从经验中学习。我们的算法在Mujoco环境中实现了有限的有限和次优的演示。我们使用行为克隆来将网络作为参考动作发生器训练,并在丢失函数和勘探噪声方面使用它。这种创新可以帮助代理商从示威活动中提取先验知识,同时降低了糟糕的马尔科维亚特性的公正的不利影响。与BC +微调和DDPGFD方法相比,它具有更好的性能,特别是当示范相对有限时。我们调用我们的方法TD3FG意味着来自发电机的TD3。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
强化学习算法在解决稀疏和延迟奖励的复杂分层任务时需要许多样本。对于此类复杂的任务,最近提出的方向舵使用奖励再分配来利用与完成子任务相关的Q功能中的步骤。但是,由于当前的探索策略无法在合理的时间内发现它们,因此通常只有很少有具有高回报的情节作为示范。在这项工作中,我们介绍了Align-rudder,该王牌利用了一个配置文件模型来进行奖励重新分布,该模型是从多个示范序列比对获得的。因此,Align-Rudder有效地采用了奖励再分配,从而大大改善了很少的演示学习。 Align-rudder在复杂的人工任务上的竞争者优于竞争对手,延迟的奖励和几乎没有示威的竞争者。在Minecraft获得Diamond的任务上,Align Rudder能够挖掘钻石,尽管不经常。代码可在https://github.com/ml-jku/align-rudder上找到。 YouTube:https://youtu.be/ho-_8zul-uy
translated by 谷歌翻译
Deep reinforcement learning algorithms have succeeded in several challenging domains. Classic Online RL job schedulers can learn efficient scheduling strategies but often takes thousands of timesteps to explore the environment and adapt from a randomly initialized DNN policy. Existing RL schedulers overlook the importance of learning from historical data and improving upon custom heuristic policies. Offline reinforcement learning presents the prospect of policy optimization from pre-recorded datasets without online environment interaction. Following the recent success of data-driven learning, we explore two RL methods: 1) Behaviour Cloning and 2) Offline RL, which aim to learn policies from logged data without interacting with the environment. These methods address the challenges concerning the cost of data collection and safety, particularly pertinent to real-world applications of RL. Although the data-driven RL methods generate good results, we show that the performance is highly dependent on the quality of the historical datasets. Finally, we demonstrate that by effectively incorporating prior expert demonstrations to pre-train the agent, we short-circuit the random exploration phase to learn a reasonable policy with online training. We utilize Offline RL as a \textbf{launchpad} to learn effective scheduling policies from prior experience collected using Oracle or heuristic policies. Such a framework is effective for pre-training from historical datasets and well suited to continuous improvement with online data collection.
translated by 谷歌翻译
技能链是一种希望通过顺序结合以前学习的技能来合成复杂行为的有希望的方法。然而,当政策遭遇在培训期间从未见过的起始状态时,幼稚的技能组成失败。对于成功的技能链接,先前的方法试图扩大策略的起始状态分布。然而,这些方法需要覆盖更大的状态分布,因为更多的策略进行测序,因此仅限于短的技能序列。在本文中,我们通过在对抗学习框架中规范终端状态分布来提出连锁多个初始状态分布的多重政策。我们评估了我们对家具组件的两个复杂的长地平衡任务的方法。我们的结果表明,我们的方法建立了第一种无模型加强学习算法来解决这些任务;而先前的技能链接方法失败。代码和视频可在https://clvrai.com/skill-chaining上获得
translated by 谷歌翻译
近年来,由于机器学习的进步,已经完成了无数关于智能机器人政策的最高级工作。然而,效率低下和缺乏转移能力阻碍了实用应用程序,尤其是在人类机器人协作中,少数快速学习和高灵活性成为一种努力。为了克服这一障碍,我们指的是一个“政策池”,其中包含可以轻松访问和重复使用的预训练技能。通过以灵活的顺序展开必要的技能,采用代理来管理“政策池”,取决于特定于任务的偏爱。可以从一个或几个人类专家示范中自动解释这种偏好。在这个层次结构的环境下,我们的算法能够在迷你招架环境中获得一个稀疏的奖励,多阶段的诀窍,只有一次演示,显示了有可能立即掌握人类教练的复杂机器人技能的潜力。此外,我们算法的先天质量还允许终身学习,使其成为一种多功能的代理。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
在游戏中,就像在其他许多领域一样,设计验证和测试是一个巨大的挑战,因为系统的大小和手动测试变得不可行。本文提出了一种新方法来自动游戏验证和测试。我们的方法利用了数据驱动的模仿学习技术,这几乎不需要精力和时间,并且对机器学习或编程不了解,设计师可以使用该技术有效地训练游戏测试剂。我们通过与行业专家的用户研究一起研究了方法的有效性。调查结果表明,我们的方法确实是一种有效的游戏验证方法,并且数据驱动的编程将是减少努力和提高现代游戏测试质量的有用帮助。该调查还突出了一些开放挑战。在最新文献的帮助下,我们分析了确定的挑战,并提出了适合支持和最大化我们方法实用性的未来研究方向。
translated by 谷歌翻译
将监督学习的力量(SL)用于更有效的强化学习(RL)方法,这是最近的趋势。我们通过交替在线RL和离线SL来解决稀疏奖励目标条件问题,提出一种新颖的阶段方法。在在线阶段,我们在离线阶段进行RL培训并收集推出数据,我们对数据集的这些成功轨迹执行SL。为了进一步提高样本效率,我们在在线阶段采用其他技术,包括减少任务以产生更可行的轨迹和基于价值的基于价值的内在奖励,以减轻稀疏的回报问题。我们称此总体算法为阶段性的自我模拟还原(Pair)。对稀疏的奖励目标机器人控制问题(包括具有挑战性的堆叠任务),对基本上优于非强调RL和Phasic SL基线。 Pair是第一个学习堆叠6个立方体的RL方法,只有0/1成功从头开始奖励。
translated by 谷歌翻译
本文解决了逆增强学习(IRL)的问题 - 从观察其行为中推断出代理的奖励功能。 IRL可以为学徒学习提供可概括和紧凑的代表,并能够准确推断人的偏好以帮助他们。 %并提供更准确的预测。但是,有效的IRL具有挑战性,因为许多奖励功能可以与观察到的行为兼容。我们专注于如何利用先前的强化学习(RL)经验,以使学习这些偏好更快,更高效。我们提出了IRL算法基础(通过样本中的连续功能意图推断行为获取行为),该算法利用多任务RL预培训和后继功能,使代理商可以为跨越可能的目标建立强大的基础,从而跨越可能的目标。给定的域。当仅接触一些专家演示以优化新颖目标时,代理商会使用其基础快速有效地推断奖励功能。我们的实验表明,我们的方法非常有效地推断和优化显示出奖励功能,从而准确地从少于100个轨迹中推断出奖励功能。
translated by 谷歌翻译
Starcraft II(SC2)对强化学习(RL)提出了巨大的挑战,其中主要困难包括巨大的状态空间,不同的动作空间和长期的视野。在这项工作中,我们研究了《星际争霸II》全长游戏的一系列RL技术。我们研究了涉及提取的宏观活动和神经网络的层次结构的层次RL方法。我们研究了课程转移培训程序,并在具有4个GPU和48个CPU线的单台计算机上训练代理。在64x64地图并使用限制性单元上,我们对内置AI的获胜率达到99%。通过课程转移学习算法和战斗模型的混合物,我们在最困难的非作战水平内置AI(7级)中获得了93%的胜利率。在本文的扩展版本中,我们改进了架构,以针对作弊水平训练代理商,并在8级,9级和10级AIS上达到胜利率,为96%,97%和94 %, 分别。我们的代码在https://github.com/liuruoze/hiernet-sc2上。为了为我们的工作以及研究和开源社区提供基线,我们将其复制了一个缩放版本的Mini-Alphastar(MAS)。 MAS的最新版本为1.07,可以在具有564个动作的原始动作空间上进行培训。它旨在通过使超参数可调节来在单个普通机器上进行训练。然后,我们使用相同的资源将我们的工作与MAS进行比较,并表明我们的方法更有效。迷你α的代码在https://github.com/liuruoze/mini-alphastar上。我们希望我们的研究能够阐明对SC2和其他大型游戏有效增强学习的未来研究。
translated by 谷歌翻译