对看不见的环境变化的深入强化学习的概括通常需要对大量各种培训变化进行政策学习。我们从经验上观察到,接受过许多变化的代理商(通才)倾向于在一开始就更快地学习,但是长期以来其最佳水平的性能高原。相比之下,只接受一些变体培训的代理商(专家)通常可以在有限的计算预算下获得高回报。为了两全其美,我们提出了一个新颖的通才特权训练框架。具体来说,我们首先培训一名通才的所有环境变化。当它无法改善时,我们会推出大量的专家,并从通才克隆过重量,每个人都接受了训练,以掌握选定的一小部分变化子集。我们终于通过所有专家的示范引起的辅助奖励恢复了通才的培训。特别是,我们调查了开始专业培训的时机,并在专家的帮助下比较策略以学习通才。我们表明,该框架将政策学习的信封推向了包括Procgen,Meta-World和Maniskill在内的几个具有挑战性和流行的基准。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
将监督学习的力量(SL)用于更有效的强化学习(RL)方法,这是最近的趋势。我们通过交替在线RL和离线SL来解决稀疏奖励目标条件问题,提出一种新颖的阶段方法。在在线阶段,我们在离线阶段进行RL培训并收集推出数据,我们对数据集的这些成功轨迹执行SL。为了进一步提高样本效率,我们在在线阶段采用其他技术,包括减少任务以产生更可行的轨迹和基于价值的基于价值的内在奖励,以减轻稀疏的回报问题。我们称此总体算法为阶段性的自我模拟还原(Pair)。对稀疏的奖励目标机器人控制问题(包括具有挑战性的堆叠任务),对基本上优于非强调RL和Phasic SL基线。 Pair是第一个学习堆叠6个立方体的RL方法,只有0/1成功从头开始奖励。
translated by 谷歌翻译
智能代理人应该有能力利用先前学习的任务中的知识,以便快速有效地学习新任务。元学习方法已成为实现这一目标的流行解决方案。然而,迄今为止,元强化学习(META-RL)算法仅限于具有狭窄任务分布的简单环境。此外,预处理的范式随后进行了微调以适应新任务,这是一种简单而有效的解决方案,这些解决方案是监督和自我监督的学习。这使质疑元学习方法的好处在加强学习中的好处,这通常是以高复杂性为代价的。因此,我们研究了包括Procgen,rlbench和Atari在内的各种基于视觉的基准测试中的元RL方法,在这些基准测试中,对完全新颖的任务进行了评估。我们的发现表明,当对不同任务(而不是相同任务的不同变化)评估元学习方法时,对新任务进行微调的多任务预处理也相同或更好,或者更好,比用meta进行元数据。测试时间适应。这对于将来的研究令人鼓舞,因为多任务预处理往往比Meta-RL更简单和计算更便宜。从这些发现中,我们主张评估未来的Meta-RL方法在更具挑战性的任务上,并包括以简单但强大的基线进行微调预处理。
translated by 谷歌翻译
实现人类水平的灵活性是机器人技术中的重要开放问题。但是,即使在婴儿级别,灵巧的手动操纵任务也是通过增强学习(RL)的挑战。困难在于高度的自由度和异质因素(例如手指关节)之间所需的合作。在这项研究中,我们提出了双人灵感手基准(BI-DEXHANDS),这是一种模拟器,涉及两只灵巧的手,其中包含数十只双人操纵任务和数千个目标对象。具体而言,根据认知科学文献,BI-DEXHANDS中的任务旨在匹配不同级别的人类运动技能。我们在ISSAC体育馆里建造了Bi-Dexhands;这可以实现高效的RL培训,仅在一个NVIDIA RTX 3090中达到30,000+ fps。我们在不同的设置下为流行的RL算法提供了全面的基准;这包括单代理/多代理RL,离线RL,多任务RL和META RL。我们的结果表明,PPO类型的上车算法可以掌握简单的操纵任务,该任务等效到48个月的人类婴儿(例如,捕获飞行的物体,打开瓶子),而多代理RL可以进一步帮助掌握掌握需要熟练的双人合作的操作(例如,举起锅,堆叠块)。尽管每个任务都取得了成功,但在获得多个操纵技能方面,现有的RL算法无法在大多数多任务和少量学习设置中工作,这需要从RL社区进行更实质性的发展。我们的项目通过https://github.com/pku-marl/dexteroushands开放。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multitask learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 7 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods. 1
translated by 谷歌翻译
由于部分可观察性,高维视觉感知和延迟奖励,在MINECRAFT等开放世界游戏中的学习理性行为仍然是挑战,以便对加固学习(RL)研究造成挑战性,高维视觉感知和延迟奖励。为了解决这个问题,我们提出了一种具有代表学习和模仿学习的样本有效的等级RL方法,以应对感知和探索。具体来说,我们的方法包括两个层次结构,其中高级控制器学习控制策略来控制选项,低级工作人员学会解决每个子任务。为了提高子任务的学习,我们提出了一种技术组合,包括1)动作感知表示学习,其捕获了行动和表示之间的基础关系,2)基于鉴别者的自模仿学习,以实现有效的探索,以及3)合奏行为克隆一致性筛选政策鲁棒性。广泛的实验表明,Juewu-MC通过大边缘显着提高了样品效率并优于一组基线。值得注意的是,我们赢得了神经脂溢斯矿业锦标赛2021年研究竞赛的冠军,并实现了最高的绩效评分。
translated by 谷歌翻译
可推广的对象操纵技能对于智能和多功能机器人在现实世界中的复杂场景中工作至关重要。尽管在强化学习方面取得了最新进展,但学习可以处理一类几何多样的铰接物体的可推广的操纵政策仍然非常具有挑战性。在这项工作中,我们通过以任务不合时宜的方式模仿学习来解决此类别级别的对象操纵政策学习问题,我们假设没有手工制作的密集奖励,而只是最终的奖励。鉴于这个新颖且具有挑战性的概括性政策学习问题,我们确定了几个关键问题,这些问题可能使以前的模仿学习算法失败,并阻碍了概括是看不见的实例。然后,我们提出了几种一般但至关重要的技术,包括从演示中学习的生成性对抗性自我象征学习,歧视者的逐步增长以及对专家缓冲区的实例平衡,可以准确地指出和解决这些问题,并可以受益于类别级别的操纵政策学习,而不管有什么问题任务。我们对Maniskill基准测试的实验表明,所有任务都有显着的改进,而我们的消融研究进一步验证了每种提出的技术的贡献。
translated by 谷歌翻译
由于在存在障碍物和高维视觉观测的情况下,由于在存在障碍和高维视觉观测的情况下,学习复杂的操纵任务是一个具有挑战性的问题。事先工作通过整合运动规划和强化学习来解决勘探问题。但是,运动计划程序增强策略需要访问状态信息,该信息通常在现实世界中不可用。为此,我们建议通过(1)视觉行为克隆以通过(1)视觉行为克隆来将基于国家的运动计划者增强策略,以删除运动计划员依赖以及其抖动运动,以及(2)基于视觉的增强学习来自行为克隆代理的平滑轨迹的指导。我们在阻塞环境中的三个操作任务中评估我们的方法,并将其与各种加固学习和模仿学习基线进行比较。结果表明,我们的框架是高度采样的和优于最先进的算法。此外,与域随机化相结合,我们的政策能够用零击转移到未经分散的人的未经环境环境。 https://clvrai.com/mopa-pd提供的代码和视频
translated by 谷歌翻译
人类可以利用先前的经验,并从少数示威活动中学习新颖的任务。与旨在通过更好的算法设计来快速适应的离线元强化学习相反,我们研究了建筑归纳偏见对少量学习能力的影响。我们提出了一个基于及时的决策变压器(提示-DT),该变压器利用了变压器体系结构和及时框架的顺序建模能力,以在离线RL中实现少量适应。我们设计了轨迹提示,其中包含少量演示的片段,并编码特定于任务的信息以指导策略生成。我们在五个Mujoco控制基准中进行的实验表明,提示-DT是一个强大的少数学习者,而没有对看不见的目标任务进行任何额外的填充。提示-DT的表现优于其变体和强大的元线RL基线,只有一个轨迹提示符只包含少量时间段。提示-DT也很健壮,可以提示长度更改并可以推广到分布(OOD)环境。
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
元加强学习(META-RL)是一种方法,即从解决各种任务中获得的经验被蒸馏成元政策。当仅适应一个小(或仅一个)数量的步骤时,元派利赛能够在新的相关任务上近距离执行。但是,采用这种方法来解决现实世界中的问题的主要挑战是,它们通常与稀疏的奖励功能相关联,这些功能仅表示任务是部分或完全完成的。我们考虑到某些数据可能由亚最佳代理生成的情况,可用于每个任务。然后,我们使用示范(EMRLD)开发了一类名为“增强元RL”的算法,即使在训练过程中获得了次优的指导,也可以利用此信息。我们展示了EMRLD如何共同利用RL和在离线数据上进行监督学习,以生成一个显示单调性能改进的元数据。我们还开发了一个称为EMRLD-WS的温暖开始的变体,该变体对于亚最佳演示数据特别有效。最后,我们表明,在包括移动机器人在内的各种稀疏奖励环境中,我们的EMRLD算法显着优于现有方法。
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
技能链是一种希望通过顺序结合以前学习的技能来合成复杂行为的有希望的方法。然而,当政策遭遇在培训期间从未见过的起始状态时,幼稚的技能组成失败。对于成功的技能链接,先前的方法试图扩大策略的起始状态分布。然而,这些方法需要覆盖更大的状态分布,因为更多的策略进行测序,因此仅限于短的技能序列。在本文中,我们通过在对抗学习框架中规范终端状态分布来提出连锁多个初始状态分布的多重政策。我们评估了我们对家具组件的两个复杂的长地平衡任务的方法。我们的结果表明,我们的方法建立了第一种无模型加强学习算法来解决这些任务;而先前的技能链接方法失败。代码和视频可在https://clvrai.com/skill-chaining上获得
translated by 谷歌翻译
While reinforcement learning (RL) has become a more popular approach for robotics, designing sufficiently informative reward functions for complex tasks has proven to be extremely difficult due their inability to capture human intent and policy exploitation. Preference based RL algorithms seek to overcome these challenges by directly learning reward functions from human feedback. Unfortunately, prior work either requires an unreasonable number of queries implausible for any human to answer or overly restricts the class of reward functions to guarantee the elicitation of the most informative queries, resulting in models that are insufficiently expressive for realistic robotics tasks. Contrary to most works that focus on query selection to \emph{minimize} the amount of data required for learning reward functions, we take an opposite approach: \emph{expanding} the pool of available data by viewing human-in-the-loop RL through the more flexible lens of multi-task learning. Motivated by the success of meta-learning, we pre-train preference models on prior task data and quickly adapt them for new tasks using only a handful of queries. Empirically, we reduce the amount of online feedback needed to train manipulation policies in Meta-World by 20$\times$, and demonstrate the effectiveness of our method on a real Franka Panda Robot. Moreover, this reduction in query-complexity allows us to train robot policies from actual human users. Videos of our results and code can be found at https://sites.google.com/view/few-shot-preference-rl/home.
translated by 谷歌翻译
近年来,深度加固学习(DRL)已经成功地进入了复杂的决策应用,例如机器人,自动驾驶或视频游戏。违规算法往往比其策略对应物更具样本效率,并且可以从存储在重放缓冲区中存储的任何违规数据中受益。专家演示是此类数据的流行来源:代理人接触到成功的国家和行动,可以加速学习过程并提高性能。在过去,已经提出了多种想法来充分利用缓冲区中的演示,例如仅在演示或最小化额外的成本函数的预先估算。我们继续进行研究,以孤立地评估这些想法中的几个想法,以了解哪一个具有最大的影响。我们还根据给予示范和成功集中的奖励奖金,为稀疏奖励任务提供了一种新的方法。首先,我们向来自示威活动的过渡提供奖励奖金,以鼓励代理商符合所证明的行为。然后,在收集成功的剧集时,我们将其在将其添加到重播缓冲区之前与相同的奖金转换,鼓励代理也与其先前的成功相匹配。我们的实验的基本算法是流行的软演员 - 评论家(SAC),用于连续动作空间的最先进的脱核算法。我们的实验专注于操纵机器人,特别是在模拟中的机器人手臂的3D到达任务。我们表明,我们的方法Sacr2根据奖励重新标记提高了此任务的性能,即使在没有示范的情况下也是如此。
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
translated by 谷歌翻译