Graph learning problems are typically approached by focusing on learning the topology of a single graph when signals from all nodes are available. However, many contemporary setups involve multiple related networks and, moreover, it is often the case that only a subset of nodes is observed while the rest remain hidden. Motivated by this, we propose a joint graph learning method that takes into account the presence of hidden (latent) variables. Intuitively, the presence of the hidden nodes renders the inference task ill-posed and challenging to solve, so we overcome this detrimental influence by harnessing the similarity of the estimated graphs. To that end, we assume that the observed signals are drawn from a Gaussian Markov random field with latent variables and we carefully model the graph similarity among hidden (latent) nodes. Then, we exploit the structure resulting from the previous considerations to propose a convex optimization problem that solves the joint graph learning task by providing a regularized maximum likelihood estimator. Finally, we compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
translated by 谷歌翻译
来自节点观测集的学习图表代表了一个正式称为图形拓扑推断的突出问题。然而,当前方法通过通常关注推断的单个网络而受到限制,并且他们假设来自所有节点的观察。首先,许多当代设置涉及多个相关网络,而第二个,其次,通常只是观察到剩余剩余隐藏的节点子集的情况。通过这些事实的动机,我们介绍了一种联合图拓扑推理方法,用于模拟隐藏变量的影响。在所观察到的信号在寻求的图表和图表密切相关的假设下,多个网络的联合估计允许我们利用这种关系来提高学习图的质量。此外,我们面临建模隐藏节点影响以最大限度地减少其不利影响的挑战性问题。为了获得可编程方法,我们利用手头的设置的特定结构,并利用不同图之间的相似性,这影响了观察到的和隐藏节点。为了测试所提出的方法,提供了综合和实际图的数值模拟。
translated by 谷歌翻译
本文考虑通过最小化Stein损失来估算高维拉普人约束精密矩阵的问题。我们获得了这种估计器存在的必要和充分条件,这归结为检查某些数据相关图是否已连接。我们还在对称沥青损失下的高维设置中证明了一致性。我们表明错误率不依赖于图形稀疏性,或其他类型的结构,并且Laplacian约束足以实现高维一致性。我们的证据利用图拉普拉斯人的性质,以及基于有效图电阻的提出估计的表征。我们通过数值实验验证了我们的理论索赔。
translated by 谷歌翻译
我们考虑了从节点观测值估算多个网络拓扑的问题,其中假定这些网络是从相同(未知)随机图模型中绘制的。我们采用图形作为我们的随机图模型,这是一个非参数模型,可以从中绘制出潜在不同大小的图形。图形子的多功能性使我们能够解决关节推理问题,即使对于要恢复的图形包含不同数量的节点并且缺乏整个图形的精确比对的情况。我们的解决方案是基于将最大似然惩罚与Graphon估计方案结合在一起,可用于增强现有网络推理方法。通过引入嘈杂图抽样信息的强大方法,进一步增强了所提出的联合网络和图形估计。我们通过将其性能与合成和实际数据集中的竞争方法进行比较来验证我们提出的方法。
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
众所周知,许多网络系统,例如电网,大脑和舆论动态社交网络,都可以遵守保护法。这种现象的例子包括电网中的基尔乔夫法律和社交网络中的意见共识。网络系统中的保护定律可以建模为$ x = b^{*} y $的平衡方程,其中$ b^{*} $的稀疏模式捕获了网络的连接,$ y,x \在\ mathbb {r}^p $中分别是节点上“电势”和“注入流”的向量。节点电位$ y $会导致跨边缘的流量,并且在节点上注入的流量$ x $是网络动力学的无关紧要的。在几个实用的系统中,网络结构通常是未知的,需要从数据估算。为此,可以访问节点电位$ y $的样本,但只有节点注射$ x $的统计信息。在这个重要问题的激励下,我们研究了$ n $ y $ y $ y $ y $ y $ y $ y $ y $ b^{*} $稀疏结构的估计,假设节点注射$ x $遵循高斯分布,并带有已知的发行协方差$ \ sigma_x $。我们建议在高维度中为此问题的新$ \ ell_ {1} $ - 正则最大似然估计器,网络的大小$ p $大于样本量$ n $。我们表明,此优化问题是目标中的凸,并接受了独特的解决方案。在新的相互不一致的条件下,我们在三重$(n,p,d)$上建立了足够的条件,对于$ b^{*} $的精确稀疏恢复是可能的; $ d $是图的程度。我们还建立了在元素最大,Frobenius和运营商规范中回收$ b^{*} $的保证。最后,我们通过对拟议估计量对合成和现实世界数据的性能进行实验验证来补充这些理论结果。
translated by 谷歌翻译
我们考虑学习底层多变量数据的稀疏无向图的问题。我们专注于稀疏精度矩阵上的图表拉普拉斯相关的约束,它在与图形节点相关联的随机变量之间编码条件依赖性。在这些约束下,精度矩阵的偏差元素是非正(总阳性),并且精度矩阵可能不是全级。我们调查了对广泛使用惩罚的日志似然方法来强制执行总积极性但不是拉普拉斯结构的修改。然后可以从非对角线精密矩阵中提取图拉普拉斯。乘法器(ADMM)算法的交替方向方法被提出和分析了Laplacian相关约束和套索的约束优化以及自适应套索处罚。基于合成数据的数值结果表明,所提出的约束的自适应套索方法显着优于现有的基于拉普拉斯的方法。我们还评估了我们对实际财务数据的方法。
translated by 谷歌翻译
我们考虑从有限的嘈杂图形信号观察中学习图表的问题,其目标是找到图形信号的平滑表示。这种问题是通过在大型数据集中推断的关系结构,并且近年来广泛研究了这种问题。大多数现有方法专注于学习观察信号平滑的图表。但是,学习的图表容易过度拟合,因为它不会考虑未观察到的信号。为了解决这个问题,我们提出了一种基于分布稳健优化方法的新型图形学习模型,该模型旨在识别不仅提供了对观察信号中的不确定性的平滑表示的图表。在统计方面,我们建立了我们提出的模型的样本绩效保障。在优化方面,我们表明,在曲线图信号分布的温和假设下,我们提出的模型承认了平滑的非凸优化配方。然后,我们开发了一个预测的渐变方法来解决这一制定并建立其收敛保证。我们的配方在图形学习环境中提供了一个新的正则化视角。此外,综合和实世界数据的广泛数值实验表明,根据各种度量的观察信号的不同群体的模型具有比较不同的群体的较强的性能。
translated by 谷歌翻译
Gaussian graphical models provide a powerful framework for uncovering conditional dependence relationships between sets of nodes; they have found applications in a wide variety of fields including sensor and communication networks, physics, finance, and computational biology. Often, one observes data on the nodes and the task is to learn the graph structure, or perform graphical model selection. While this is a well-studied problem with many popular techniques, there are typically three major practical challenges: i) many existing algorithms become computationally intractable in huge-data settings with tens of thousands of nodes; ii) the need for separate data-driven hyperparameter tuning considerably adds to the computational burden; iii) the statistical accuracy of selected edges often deteriorates as the dimension and/or the complexity of the underlying graph structures increase. We tackle these problems by developing the novel Minipatch Graph (MPGraph) estimator. Our approach breaks up the huge graph learning problem into many smaller problems by creating an ensemble of tiny random subsets of both the observations and the nodes, termed minipatches. We then leverage recent advances that use hard thresholding to solve the latent variable graphical model problem to consistently learn the graph on each minipatch. Our approach is computationally fast, embarrassingly parallelizable, memory efficient, and has integrated stability-based hyperparamter tuning. Additionally, we prove that under weaker assumptions than that of the Graphical Lasso, our MPGraph estimator achieves graph selection consistency. We compare our approach to state-of-the-art computational approaches for Gaussian graphical model selection including the BigQUIC algorithm, and empirically demonstrate that our approach is not only more statistically accurate but also extensively faster for huge graph learning problems.
translated by 谷歌翻译
Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
translated by 谷歌翻译
从数据中揭示馈线拓扑对于提高情境意识和适当利用智能资源在电源分配网格中至关重要。该教程总结,对比和建立了对拓扑识别的最新作品与检测方案之间针对电源分配网格提出的有用联系。%在不同的测量类型,可观察性和采样方面。主要重点是突出使用分配网格中测量设备有限的方法,同时使用电源流体物理和馈线的结构特性来增强拓扑估算。可以从传统的方式或积极地收集相量测量单元或智能电表的网格数据,或者在执行网格资源并测量馈线的电压响应时积极收集。在不同的仪表放置方案下,对馈线可识别性和可检测性的分析主张进行了审查。可以通过具有各种计算复杂性的算法解决方案来确切或大致获得此类拓扑学习主张,从最小二乘拟合到凸优化问题,从图形上的多项式时间搜索到综合计划。该教程渴望为研究人员和工程师提供有关当前可行分配网格学习和对未来工作方向的见解的了解。
translated by 谷歌翻译
高斯图形模型(GGM)广泛用于基因组学,生态学,心理测量学等各个领域的探索性数据分析。在高维度的情况下,当变量数量超过观测值数量的数量级时,GGM的估计是一个困难且不稳定的优化问题。变量或变量选择的聚类通常是在GGM估计之前进行的。我们提出了一种新方法,允许同时推断出分层聚类结构和描述层次结构每个级别独立性结构的图。该方法基于解决凸优化问题,该问题结合了图形套索惩罚与融合型套索惩罚。提出了有关真实和合成数据的结果。
translated by 谷歌翻译
在本文中,我们研究了推断空间变化的高斯马尔可夫随机场(SV-GMRF)的问题,其中的目标是学习代表基因之间网络关系的稀疏,特定于上下文的GMRF网络。 SV-GMRF的一个重要应用是推断来自空间分辨转录组学数据集的基因调节网络。当前有关SV-GMRF推断的工作基于正则最大似然估计(MLE),并且由于其高度非线性的性质而受到压倒性的计算成本。为了减轻这一挑战,我们提出了一个简单有效的优化问题,代替了配备强大的统计和计算保证的MLE。我们提出的优化问题在实践中非常有效:我们可以在不到2分钟的时间内解决具有超过200万变量的SV-GMRF的实例。我们将开发的框架应用于研究胶质母细胞瘤中的基因调节网络如何在组织内部空间重新连接,并确定转录因子Hes4和核糖体蛋白的显着活性是表征肿瘤血管周期壁iche中基因表达网络的特征抗性干细胞。
translated by 谷歌翻译
当节点具有人口统计属性时,概率图形模型中社区结构的推理可能不会与公平约束一致。某些人口统计学可能在某些检测到的社区中过度代表,在其他人中欠代表。本文定义了一个新的$ \ ell_1 $ -regulared伪似然方法,用于公平图形模型选择。特别是,我们假设真正的基础图表​​中存在一些社区或聚类结构,我们寻求从数据中学习稀疏的无向图形及其社区,使得人口统计团体在社区内相当代表。我们的优化方法使用公平的人口统计奇偶校验定义,但框架很容易扩展到其他公平的定义。我们建立了分别,连续和二进制数据的高斯图形模型和Ising模型的提出方法的统计一致性,证明了我们的方法可以以高概率恢复图形及其公平社区。
translated by 谷歌翻译
重度抑郁症(MDD)需要研究患者的大脑功能连通性改变,可以通过静止状态功能磁共振成像(RS-FMRI)数据发现。我们考虑确定单个MDD患者大脑功能连通性改变的问题。这是特别困难的,因为在fMRI扫描期间收集的数据量过于限制,无法为个人分析提供足够的信息。此外,RS-FMRI数据通常具有不完整,稀疏性,可变性,高维度和高噪声的特征。为了解决这些问题,我们提出了一个多任务高斯贝叶斯网络(MTGBN)框架,该框架能够识别MDD患者的个体疾病诱导的改变。我们假设这种疾病引起的改变显示了与该工具相似的程度,以学习从观察到了解系统如何共同从相关任务结构构造的网络结构。首先,我们将每类观察中的每个患者视为一项任务,然后通过从共享编码先验知识的默认协方差矩阵的所有任务中学习该数据类的高斯贝叶斯网络(GBN)。此设置可以帮助我们从有限的数据中学习更多信息。接下来,我们得出了完整的似然函数的封闭式公式,并使用蒙特卡洛期望 - 最大化(MCEM)算法有效地搜索大约最佳的贝叶斯网络结构。最后,我们通过模拟和现实世界的RS-FMRI数据评估方法的性能。
translated by 谷歌翻译
基于添加条件独立性,我们为离散节点变量引入非参数图形模型。添加剂条件独立性是一种三种方式统计关系,其通过满足半石灰阳极公理来利用有条件独立性与有条件的独立性共享类似的性质。基于该关系,我们构建了一种用于离散变量的加性图形模型,其不受诸如诸如Ising模型的参数模型的限制。我们通过惩罚添加精度运算符的离散版本的惩罚估算来开发新的图形模型的估计,并在超高维设置下建立估计器的一致性。随着这些方法的发展,我们还利用离散随机变量的性质来揭示添加剂条件独立性与条件独立性之间的更深层次关系。新的图形模型在某些稀疏条件下减少了条件独立性图形模型。我们进行仿真实验和对HIV抗逆转录病毒治疗数据集的分析,以比较现有的新方法。
translated by 谷歌翻译
空气污染监测平台在预防和减轻污染影响方面发挥着非常重要的作用。绘图信号处理领域的最新进展使得可以使用图表描述和分析空气污染监测网络。其中一个主要应用是使用传感器的子集重新重建图表中的测量信号。使用来自传感器邻居的信息重建信号可以有助于提高网络数据的质量,示例是用相关的相邻节点的缺失数据填充,或者校正与更准确的相邻传感器的漂移传感器。本文比较了各种类型的图形信号重建方法应用于西班牙空气污染参考站的真实数据集。所考虑的方法是拉普拉斯插值,曲线​​图信号处理低通基的曲线曲线信号重建,以及基于内核的曲线图信号重建,并在测量O3,NO2和PM10的实际空气污染数据集上进行比较。示出了重建污染物信号的方法的能力,以及该重建的计算成本。结果表明了基于基于内核的曲线图信号重建的方法的优越性,以及具有大量低成本传感器的空气污染监测网络中的方法的难度。但是,我们表明可以通过简单的方法克服可扩展性,例如使用聚类算法对网络进行分区。
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
越来越多的间歇可再生能源的整合,特别是在分配水平,需要对TheGrid的知识而设计的先进规划和优化方法,特别是捕获电网拓扑和线参数的进入矩阵。然而,对进入矩阵的可靠估计可以丢失或迅速地过时用于时间变化网格。在这项工作中,我们提出了利用从微量PMU收集的电压和电流测量的数据驱动的识别方法。更确切地说,我们首先呈现最大的似然方法,然后朝着贝叶斯框架移动,利用最大后验估计的原则。与大多数现有的Con-Tribution相比,我们的方法不仅是电压和电流数据上的测量噪声中的因素,而且还能够利用可用的先验信息,例如稀疏性模式和已知的列表参数。在基准案件上进行的模拟表明,与储藏仪相比,我们的方法可以实现明显更大的准确性。
translated by 谷歌翻译