重度抑郁症(MDD)需要研究患者的大脑功能连通性改变,可以通过静止状态功能磁共振成像(RS-FMRI)数据发现。我们考虑确定单个MDD患者大脑功能连通性改变的问题。这是特别困难的,因为在fMRI扫描期间收集的数据量过于限制,无法为个人分析提供足够的信息。此外,RS-FMRI数据通常具有不完整,稀疏性,可变性,高维度和高噪声的特征。为了解决这些问题,我们提出了一个多任务高斯贝叶斯网络(MTGBN)框架,该框架能够识别MDD患者的个体疾病诱导的改变。我们假设这种疾病引起的改变显示了与该工具相似的程度,以学习从观察到了解系统如何共同从相关任务结构构造的网络结构。首先,我们将每类观察中的每个患者视为一项任务,然后通过从共享编码先验知识的默认协方差矩阵的所有任务中学习该数据类的高斯贝叶斯网络(GBN)。此设置可以帮助我们从有限的数据中学习更多信息。接下来,我们得出了完整的似然函数的封闭式公式,并使用蒙特卡洛期望 - 最大化(MCEM)算法有效地搜索大约最佳的贝叶斯网络结构。最后,我们通过模拟和现实世界的RS-FMRI数据评估方法的性能。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
贝叶斯结构学习允许从数据推断贝叶斯网络结构,同时推理认识性不确定性 - 朝着实现现实世界系统的主动因果发现和设计干预的关键因素。在这项工作中,我们为贝叶斯结构学习(DIBS)提出了一般,完全可微分的框架,其在潜在概率图表表示的连续空间中运行。与现有的工作相反,DIBS对局部条件分布的形式不可知,并且允许图形结构和条件分布参数的关节后部推理。这使得我们的配方直接适用于复杂贝叶斯网络模型的后部推理,例如,具有由神经网络编码的非线性依赖性。使用DIBS,我们设计了一种高效,通用的变分推理方法,用于近似结构模型的分布。在模拟和现实世界数据的评估中,我们的方法显着优于关节后部推理的相关方法。
translated by 谷歌翻译
多任务学习经常用于对一组相同功能集的一组相关响应变量进行建模,从而相对于分别处理每个响应变量的方法提高了预测性能和建模精度。尽管多任务学习的潜力比单任务替代方案具有更强大的推理,但该领域的先前工作在很大程度上忽略了不确定性量化。我们在本文中的重点是神经影像学中常见的多任务问题,其目标是了解多个认知任务分数(或其他主题级评估)与从成像收集的脑连接数据之间的关系。我们提出了一个选择性推断以解决此问题的框架,并具有以下灵活性:(i)通过稀疏性惩罚共同确定每个任务的相关协变量,(ii)基于估计的稀疏性在模型中进行有效推理结构体。我们的框架为推理提供了新的有条件过程,基于选择事件的改进,该事件产生了可拖延的选择调整后的可能性。这给出了最大似然推理的估计方程式的近似系统,可通过单个凸优化问题解决,并使我们能够在大约正确的覆盖范围内有效地形成置信区间。我们的选择性推理方法应用于青少年认知大脑发展(ABCD)研究的模拟数据和数据,比常用的替代方案(例如数据拆分)产生了更紧密的置信区间。我们还通过模拟证明,与单任务方法相比,具有选择性推理的多任务学习可以更准确地恢复真实信号。
translated by 谷歌翻译
贝叶斯网络是一种图形模型,用于编码感兴趣的变量之间的概率关系。当与统计技术结合使用时,图形模型对数据分析具有几个优点。一个,因为模型对所有变量中的依赖性进行编码,因此它易于处理缺少某些数据条目的情况。二,贝叶斯网络可以用于学习因果关系,因此可以用来获得关于问题域的理解并预测干预的后果。三,因为该模型具有因果和概率语义,因此是结合先前知识(通常出现因果形式)和数据的理想表示。四,贝叶斯网络与贝叶斯网络的统计方法提供了一种有效和原则的方法,可以避免数据过剩。在本文中,我们讨论了从先前知识构建贝叶斯网络的方法,总结了使用数据来改善这些模型的贝叶斯统计方法。关于后一项任务,我们描述了学习贝叶斯网络的参数和结构的方法,包括使用不完整数据学习的技术。此外,我们还联系了贝叶斯网络方法,以学习监督和无监督学习的技术。我们说明了使用真实案例研究的图形建模方法。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
在学习从观察数据中学习贝叶斯网络的图形结构是描述和帮助了解复杂应用程序中的数据生成过程的关键,而任务由于其计算复杂性而构成了相当大的挑战。代表贝叶斯网络模型的定向非循环图(DAG)通常不会从观察数据识别,并且存在各种方法来估计其等价类。在某些假设下,流行的PC算法可以通过测试条件独立(CI)一致地始终恢复正确的等价类,从边际独立关系开始,逐步扩展调节集。这里,我们提出了一种通过利用协方差与精密矩阵之间的反向关系来执行PC算法内的CI测试的新颖方案。值得注意的是,精密矩阵的元素与高斯数据的部分相关性。然后,我们的算法利用对协方差和精密矩阵的块矩阵逆转,同时对互补(或双)调节集的部分相关性进行测试。因此,双PC算法的多个CI测试首先考虑边缘和全阶CI关系并逐步地移动到中心顺序。仿真研究表明,双PC算法在运行时和恢复底层网络结构方面都优于经典PC算法。
translated by 谷歌翻译
结构方程模型(SEM)是一种有效的框架,其原因是通过定向非循环图(DAG)表示的因果关系。最近的进步使得能够从观察数据中实现了DAG的最大似然点估计。然而,在实际场景中,可以不能准确地捕获在推断下面的底层图中的不确定性,其中真正的DAG是不可识别的并且/或观察到的数据集是有限的。我们提出了贝叶斯因果发现网(BCD网),一个变分推理框架,用于估算表征线性高斯SEM的DAG的分布。由于图形的离散和组合性质,开发一个完整的贝叶斯后面是挑战。我们通过表达变分别家庭分析可扩展VI的可扩展VI的关键设计选择,例如1)表达性变分别家庭,2)连续弛豫,使低方差随机优化和3)在潜在变量上具有合适的前置。我们提供了一系列关于实际和合成数据的实验,显示BCD网在低数据制度中的标准因果发现度量上的最大似然方法,例如结构汉明距离。
translated by 谷歌翻译
我们考虑了从节点观测值估算多个网络拓扑的问题,其中假定这些网络是从相同(未知)随机图模型中绘制的。我们采用图形作为我们的随机图模型,这是一个非参数模型,可以从中绘制出潜在不同大小的图形。图形子的多功能性使我们能够解决关节推理问题,即使对于要恢复的图形包含不同数量的节点并且缺乏整个图形的精确比对的情况。我们的解决方案是基于将最大似然惩罚与Graphon估计方案结合在一起,可用于增强现有网络推理方法。通过引入嘈杂图抽样信息的强大方法,进一步增强了所提出的联合网络和图形估计。我们通过将其性能与合成和实际数据集中的竞争方法进行比较来验证我们提出的方法。
translated by 谷歌翻译
大脑中的功能连接通常由加权网络表示,其中节点表示大脑中的位置,并且边缘表示这些位置之间的连接强度。分析这些数据的一个挑战是各个边缘水平的推断并不是特别生物学上的意义;解释在所谓的功能区域或节点组和它们之间的连接级别更有用;这通常被称为神经影像学文献中的“图表感知”推断。然而,汇集功能区域导致信息损失和更低的准确性。另一个挑战是主题内的边缘权重之间的相关性,这使得基于独立假设不可靠的推断。我们通过线性混合效果模型来解决这两种挑战,该挑战涉及功能区域和边缘依赖性,同时仍然建模各个边缘权重,以避免丢失信息。该模型允许将两种群体(例如患者和健康对照)进行比较,无论是在功能区水平和各个边缘水平,都导致生物学上有意义的解释。我们将该模型符合精神分裂症和健康控制的休息状态FMRI数据,获得与精神分裂症文献一致的可解释结果。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
我们介绍了一个新型的多层加权网络模型,该模型除了本地信号外,还考虑了全局噪声。该模型类似于多层随机块模型(SBM),但关键区别在于,跨层之间的块之间的相互作用在整个系统中是常见的,我们称之为环境噪声。单个块还以这些固定的环境参数为特征,以表示不属于其他任何地方的成员。这种方法允许将块同时聚类和类型化到信号或噪声中,以便更好地理解其在整个系统中的作用,而现有块模型未考虑。我们采用了分层变异推断的新颖应用来共同检测和区分块类型。我们称此模型为多层加权网络称为随机块(具有)环境噪声模型(SBANM),并开发了相关的社区检测算法。我们将此方法应用于费城神经发育队列中的受试者,以发现与精神病有关的具有共同心理病理学的受试者社区。
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译
We present a new algorithm for Bayesian network structure learning, called Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning, constraint-based, and search-and-score techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and state-of-the-art algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
当节点具有人口统计属性时,概率图形模型中社区结构的推理可能不会与公平约束一致。某些人口统计学可能在某些检测到的社区中过度代表,在其他人中欠代表。本文定义了一个新的$ \ ell_1 $ -regulared伪似然方法,用于公平图形模型选择。特别是,我们假设真正的基础图表​​中存在一些社区或聚类结构,我们寻求从数据中学习稀疏的无向图形及其社区,使得人口统计团体在社区内相当代表。我们的优化方法使用公平的人口统计奇偶校验定义,但框架很容易扩展到其他公平的定义。我们建立了分别,连续和二进制数据的高斯图形模型和Ising模型的提出方法的统计一致性,证明了我们的方法可以以高概率恢复图形及其公平社区。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
贝叶斯网络是概率的图形模型,广泛用于了解高维数据的依赖关系,甚至促进因果发现。学习作为定向的非循环图(DAG)编码的底层网络结构是高度具有挑战性的,主要是由于大量可能的网络与非狭窄性约束结合。努力专注于两个前面:基于约束的方法,该方法执行条件独立测试,以排除具有贪婪或MCMC方案的DAG空间的边缘和分数和搜索方法。在这里,我们以一种新的混合方法综合这两个领域,这降低了基于约束方法的MCMC方法的复杂性。 MCMC方案中的各个步骤仅需要简单的表查找,以便可以有效地获得非常长的链。此外,该方案包括迭代过程,以校正来自条件独立测试的错误。该算法对替代方案提供了显着卓越的性能,特别是因为也可以从后部分布采样DAG,从而实现全面的贝叶斯模型为大量较大的贝叶斯网络进行平均。
translated by 谷歌翻译
在贝叶斯网络(BNS)中,边缘方向对于因果推理和推理至关重要。然而,马尔可夫等价类考虑因素意味着它并不总是可以建立边缘方向,这就是许多BN结构学习算法不能从纯粹观察数据定向所有边缘的原因。此外,潜在的混乱会导致假阳性边缘。已经提出了相对较少的方法来解决这些问题。在这项工作中,我们介绍了从涉及观察数据集的离散数据和一个或多个介入数据集的离散数据的结构学习的混合MFGS-BS(Meance规则和快速贪婪等价搜索)算法。该算法假设存在潜在变量的因果不足,并产生部分祖先图形(PAG)。结构学习依赖于混合方法和新的贝叶斯评分范式,用于计算添加到学习图表的每个定向边缘的后验概率。基于众所周知的网络的实验结果高达109个变量和10K样本大小表明,MFGS-BS相对于最先进的结构提高了结构学习准确性,并且它是计算效率的。
translated by 谷歌翻译