近似计算以其在提高深神经网络(DNN)加速器的能量效率下以轻微精度损耗的成本而闻名。最近,近似组件的不精确性质,例如近似乘数的性质也已经成功地捍卫对DNN模型的对抗攻击。由于近似误差通过DNN层被屏蔽或取消屏蔽,因此这提出了一个关键的研究问题 - 可以近似计算始终为DNN中的对抗发生攻击提供防御,即,他们普遍防御?对此,我们使用最先进的近似乘法器呈现对不同近似DNN加速器(AXDNNS)的广泛的对抗鲁棒性分析。特别是,我们使用MNIST和CIFAR-10数据集评估十对不同AXDNN上的十个对抗的攻击的影响。我们的结果表明,对AXDNN的对抗攻击可能导致53%的精度损失,而相同的攻击可能导致精确的DNN中几乎没有准确性损失(低至0.06%)。因此,近似计算不能被称为对抗对抗攻击的普遍防御策略。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
深度学习的进步使得广泛的有希望的应用程序。然而,这些系统容易受到对抗机器学习(AML)攻击的影响;对他们的意见的离前事实制作的扰动可能导致他们错误分类。若干最先进的对抗性攻击已经证明他们可以可靠地欺骗分类器,使这些攻击成为一个重大威胁。对抗性攻击生成算法主要侧重于创建成功的例子,同时控制噪声幅度和分布,使检测更加困难。这些攻击的潜在假设是脱机产生的对抗噪声,使其执行时间是次要考虑因素。然而,最近,攻击者机会自由地产生对抗性示例的立即对抗攻击已经可能。本文介绍了一个新问题:我们如何在实时约束下产生对抗性噪音,以支持这种实时对抗攻击?了解这一问题提高了我们对这些攻击对实时系统构成的威胁的理解,并为未来防御提供安全评估基准。因此,我们首先进行对抗生成算法的运行时间分析。普遍攻击脱机产生一般攻击,没有在线开销,并且可以应用于任何输入;然而,由于其一般性,他们的成功率是有限的。相比之下,在特定输入上工作的在线算法是计算昂贵的,使它们不适合在时间约束下的操作。因此,我们提出房间,一种新型实时在线脱机攻击施工模型,其中离线组件用于预热在线算法,使得可以在时间限制下产生高度成功的攻击。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
深度学习(DL)系统的安全性是一个极为重要的研究领域,因为它们正在部署在多个应用程序中,因为它们不断改善,以解决具有挑战性的任务。尽管有压倒性的承诺,但深度学习系统容易受到制作的对抗性例子的影响,这可能是人眼无法察觉的,但可能会导致模型错误分类。对基于整体技术的对抗性扰动的保护已被证明很容易受到更强大的对手的影响,或者证明缺乏端到端评估。在本文中,我们试图开发一种新的基于整体的解决方案,该解决方案构建具有不同决策边界的防御者模型相对于原始模型。通过(1)通过一种称为拆分和剃须的方法转换输入的分类器的合奏,以及(2)通过一种称为对比度功能的方法限制重要特征,显示出相对于相对于不同的梯度对抗性攻击,这减少了将对抗性示例从原始示例转移到针对同一类的防御者模型的机会。我们使用标准图像分类数据集(即MNIST,CIFAR-10和CIFAR-100)进行了广泛的实验,以实现最新的对抗攻击,以证明基于合奏的防御的鲁棒性。我们还在存在更强大的对手的情况下评估稳健性,该对手同时靶向合奏中的所有模型。已经提供了整体假阳性和误报的结果,以估计提出的方法的总体性能。
translated by 谷歌翻译
在过去的几十年中,人工智能的兴起使我们有能力解决日常生活中最具挑战性的问题,例如癌症的预测和自主航行。但是,如果不保护对抗性攻击,这些应用程序可能不会可靠。此外,最近的作品表明,某些对抗性示例可以在不同的模型中转移。因此,至关重要的是避免通过抵抗对抗性操纵的强大模型进行这种可传递性。在本文中,我们提出了一种基于特征随机化的方法,该方法抵抗了八次针对测试阶段深度学习模型的对抗性攻击。我们的新方法包括改变目标网络分类器中的训练策略并选择随机特征样本。我们认为攻击者具有有限的知识和半知识条件,以进行最普遍的对抗性攻击。我们使用包括现实和合成攻击的众所周知的UNSW-NB15数据集评估了方法的鲁棒性。之后,我们证明我们的策略优于现有的最新方法,例如最强大的攻击,包括针对特定的对抗性攻击进行微调网络模型。最后,我们的实验结果表明,我们的方法可以确保目标网络并抵抗对抗性攻击的转移性超过60%。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
虽然深度神经网络在分类任务方面取得了很大的表现,但最近的研究表明,训练有素的网络可以通过添加微妙的噪音来欺骗。本文介绍了一种新方法,通过将恢复过程应用于自然训练的分类器的顶部来提高神经网络鲁棒性。在这种方法中,图像将被一些重要操作员故意破坏,然后在通过分类器之前恢复。Sargan - 生成对抗网络(GaN)的延伸能够去噪雷达信号。本文将显示Sargan还可以通过去除对抗效应来恢复损坏的图像。我们的结果表明,这种方法确实提高了自然培训的网络的性能。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
深度神经网络(DNNS)在各种方案中对对抗数据敏感,包括黑框方案,在该方案中,攻击者只允许查询训练有素的模型并接收输出。现有的黑框方法用于创建对抗性实例的方法是昂贵的,通常使用梯度估计或培训替换网络。本文介绍了\ textit {Attackar},这是一种基于分数的进化,黑框攻击。 Attackar是基于一个新的目标函数,可用于无梯度优化问题。攻击仅需要访问分类器的输出徽标,因此不受梯度掩蔽的影响。不需要其他信息,使我们的方法更适合现实生活中的情况。我们使用三个基准数据集(MNIST,CIFAR10和Imagenet)使用三种不同的最先进模型(Inception-V3,Resnet-50和VGG-16-BN)测试其性能。此外,我们评估了Attackar在非分辨率转换防御和最先进的强大模型上的性能。我们的结果表明,在准确性得分和查询效率方面,攻击性的表现出色。
translated by 谷歌翻译
虽然深度神经网络在各种任务中表现出前所未有的性能,但对对抗性示例的脆弱性阻碍了他们在安全关键系统中的部署。许多研究表明,即使在黑盒设置中也可能攻击,其中攻击者无法访问目标模型的内部信息。大多数黑匣子攻击基于查询,每个都可以获得目标模型的输入输出,并且许多研究侧重于减少所需查询的数量。在本文中,我们注意了目标模型的输出完全对应于查询输入的隐含假设。如果将某些随机性引入模型中,它可以打破假设,因此,基于查询的攻击可能在梯度估计和本地搜索中具有巨大的困难,这是其攻击过程的核心。从这种动机来看,我们甚至观察到一个小的添加剂输入噪声可以中和大多数基于查询的攻击和名称这个简单但有效的方法小噪声防御(SND)。我们分析了SND如何防御基于查询的黑匣子攻击,并展示其与CIFAR-10和ImageNet数据集的八种最先进的攻击有效性。即使具有强大的防御能力,SND几乎保持了原始的分类准确性和计算速度。通过在推断下仅添加一行代码,SND很容易适用于预先训练的模型。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
无线系统应用中深度学习(DL)的成功出现引起了人们对与安全有关的新挑战的担忧。一个这样的安全挑战是对抗性攻击。尽管已经有很多工作证明了基于DL的分类任务对对抗性攻击的敏感性,但是从攻击的角度来看,尚未对无线系统的基于回归的问题进行基于回归的问题。本文的目的是双重的:(i)我们在无线设置中考虑回归问题,并表明对抗性攻击可以打破基于DL的方法,并且(ii)我们将对抗性训练作为对抗性环境中的防御技术的有效性分析并表明基于DL的无线系统对攻击的鲁棒性有了显着改善。具体而言,本文考虑的无线应用程序是基于DL的功率分配,以多细胞大量多输入 - 销售输出系统的下行链路分配,攻击的目的是通过DL模型产生不可行的解决方案。我们扩展了基于梯度的对抗性攻击:快速梯度标志方法(FGSM),动量迭代FGSM和预计的梯度下降方法,以分析具有和没有对抗性训练的考虑的无线应用的敏感性。我们对这些攻击进行了分析深度神经网络(DNN)模型的性能,在这些攻击中,使用白色框和黑盒攻击制作了对抗性扰动。
translated by 谷歌翻译
大多数对抗攻击防御方法依赖于混淆渐变。这些方法在捍卫基于梯度的攻击方面是成功的;然而,它们容易被攻击绕过,该攻击不使用梯度或近似近似和使用校正梯度的攻击。不存在不存在诸如对抗培训等梯度的防御,但这些方法通常对诸如其幅度的攻击进行假设。我们提出了一种分类模型,该模型不会混淆梯度,并且通过施工而强大而不承担任何关于攻击的知识。我们的方法将分类作为优化问题,我们“反转”在不受干扰的自然图像上培训的条件发电机,以找到生成最接近查询图像的类。我们假设潜在的脆性抗逆性攻击源是前馈分类器的高度低维性质,其允许对手发现输入空间中的小扰动,从而导致输出空间的大变化。另一方面,生成模型通常是低到高维的映射。虽然该方法与防御GaN相关,但在我们的模型中使用条件生成模型和反演而不是前馈分类是临界差异。与Defense-GaN不同,它被证明生成了容易规避的混淆渐变,我们表明我们的方法不会混淆梯度。我们展示了我们的模型对黑箱攻击的极其强劲,并与自然训练的前馈分类器相比,对白盒攻击的鲁棒性提高。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)在各种现实世界的网络安全应用程序(例如网络和多媒体安全)中表现出了有希望的性能。但是,CNN结构的潜在脆弱性构成了主要的安全问题,因此不适合用于以安全为导向的应用程序,包括此类计算机网络。保护这些体系结构免受对抗性攻击,需要使用挑战性攻击的安全体系结构。在这项研究中,我们提出了一种基于合奏分类器的新型体系结构,该结构将1级分类(称为1C)的增强安全性与在没有攻击的情况下的传统2级分类(称为2C)的高性能结合在一起。我们的体系结构称为1.5级(Spritz-1.5c)分类器,并使用最终密度分类器,一个2C分类器(即CNNS)和两个并行1C分类器(即自动编码器)构造。在我们的实验中,我们通过在各种情况下考虑八次可能的对抗性攻击来评估我们提出的架构的鲁棒性。我们分别对2C和Spritz-1.5c体系结构进行了这些攻击。我们研究的实验结果表明,I-FGSM攻击对2C分类器的攻击成功率(ASR)是N-Baiot数据集训练的2C分类器的0.9900。相反,Spritz-1.5C分类器的ASR为0.0000。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
本文提出了对基于深度学习的无线信号分类器的信道感知对抗攻击。有一个发射器,发送具有不同调制类型的信号。每个接收器使用深神经网络以将其超空气接收信号分类为调制类型。与此同时,对手将对手扰动(受到电力预算的影响)透射到欺骗接收器,以在作为透射信号叠加和对抗扰动的叠加接收的分类信号中进行错误。首先,当在设计对抗扰动时不考虑通道时,这些逃避攻击被证明会失败。然后,通过考虑来自每个接收器的对手的频道效应来提出现实攻击。在示出频道感知攻击是选择性的(即,它只影响扰动设计中的信道中考虑的接收器),通过制作常见的对抗扰动来呈现广播对抗攻击,以在不同接收器处同时欺骗分类器。通过占通道,发射机输入和分类器模型可用的不同信息,将调制分类器对过空中侵犯攻击的主要脆弱性。最后,引入了基于随机平滑的经过认证的防御,即增加了噪声训练数据,使调制分类器鲁棒到对抗扰动。
translated by 谷歌翻译