本文提出了对基于深度学习的无线信号分类器的信道感知对抗攻击。有一个发射器,发送具有不同调制类型的信号。每个接收器使用深神经网络以将其超空气接收信号分类为调制类型。与此同时,对手将对手扰动(受到电力预算的影响)透射到欺骗接收器,以在作为透射信号叠加和对抗扰动的叠加接收的分类信号中进行错误。首先,当在设计对抗扰动时不考虑通道时,这些逃避攻击被证明会失败。然后,通过考虑来自每个接收器的对手的频道效应来提出现实攻击。在示出频道感知攻击是选择性的(即,它只影响扰动设计中的信道中考虑的接收器),通过制作常见的对抗扰动来呈现广播对抗攻击,以在不同接收器处同时欺骗分类器。通过占通道,发射机输入和分类器模型可用的不同信息,将调制分类器对过空中侵犯攻击的主要脆弱性。最后,引入了基于随机平滑的经过认证的防御,即增加了噪声训练数据,使调制分类器鲁棒到对抗扰动。
translated by 谷歌翻译
通过从大型天线移动到用于软件定义的无线系统的天线表面,可重新配置的智能表面(RISS)依赖于单元电池的阵列,以控制信号的散射和反射轮廓,减轻传播损耗和多路径衰减,从而改善覆盖范围和光谱效率。在本文中,在RIS存在下考虑了隐蔽的通信。虽然RIS升高了持续的传动,但是预期接收器和窃听者都可以单独尝试使用自己的深神经网络(DNN)分类器来检测该传输。 RIS交互向量是通过平衡将发送信号聚焦到接收器的两个(潜在冲突)目标而设计的,并将发送的信号远离窃听器。为了提高封面通信,对发射机的信号添加对抗扰动以欺骗窃听器的分类器,同时保持对接收器的影响。来自不同网络拓扑的结果表明,可以共同设计对抗扰动和RIS交互向量,以有效地提高接收器处的信号检测精度,同时降低窃听器的检测精度以实现封面通信。
translated by 谷歌翻译
Semantic communications seeks to transfer information from a source while conveying a desired meaning to its destination. We model the transmitter-receiver functionalities as an autoencoder followed by a task classifier that evaluates the meaning of the information conveyed to the receiver. The autoencoder consists of an encoder at the transmitter to jointly model source coding, channel coding, and modulation, and a decoder at the receiver to jointly model demodulation, channel decoding and source decoding. By augmenting the reconstruction loss with a semantic loss, the two deep neural networks (DNNs) of this encoder-decoder pair are interactively trained with the DNN of the semantic task classifier. This approach effectively captures the latent feature space and reliably transfers compressed feature vectors with a small number of channel uses while keeping the semantic loss low. We identify the multi-domain security vulnerabilities of using the DNNs for semantic communications. Based on adversarial machine learning, we introduce test-time (targeted and non-targeted) adversarial attacks on the DNNs by manipulating their inputs at different stages of semantic communications. As a computer vision attack, small perturbations are injected to the images at the input of the transmitter's encoder. As a wireless attack, small perturbations signals are transmitted to interfere with the input of the receiver's decoder. By launching these stealth attacks individually or more effectively in a combined form as a multi-domain attack, we show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low. These multi-domain adversarial attacks pose as a serious threat to the semantics of information transfer (with larger impact than conventional jamming) and raise the need of defense methods for the safe adoption of semantic communications.
translated by 谷歌翻译
Communications systems to date are primarily designed with the goal of reliable (error-free) transfer of digital sequences (bits). Next generation (NextG) communication systems are beginning to explore shifting this design paradigm of reliably decoding bits to reliably executing a given task. Task-oriented communications system design is likely to find impactful applications, for example, considering the relative importance of messages. In this paper, a wireless signal classification is considered as the task to be performed in the NextG Radio Access Network (RAN) for signal intelligence and spectrum awareness applications such as user equipment (UE) identification and authentication, and incumbent signal detection for spectrum co-existence. For that purpose, edge devices collect wireless signals and communicate with the NextG base station (gNodeB) that needs to know the signal class. Edge devices may not have sufficient processing power and may not be trusted to perform the signal classification task, whereas the transfer of the captured signals from the edge devices to the gNodeB may not be efficient or even feasible subject to stringent delay, rate, and energy restrictions. We present a task-oriented communications approach, where all the transmitter, receiver and classifier functionalities are jointly trained as two deep neural networks (DNNs), one for the edge device and another for the gNodeB. We show that this approach achieves better accuracy with smaller DNNs compared to the baselines that treat communications and signal classification as two separate tasks. Finally, we discuss how adversarial machine learning poses a major security threat for the use of DNNs for task-oriented communications. We demonstrate the major performance loss under backdoor (Trojan) attacks and adversarial (evasion) attacks that target the training and test processes of task-oriented communications.
translated by 谷歌翻译
无线系统应用中深度学习(DL)的成功出现引起了人们对与安全有关的新挑战的担忧。一个这样的安全挑战是对抗性攻击。尽管已经有很多工作证明了基于DL的分类任务对对抗性攻击的敏感性,但是从攻击的角度来看,尚未对无线系统的基于回归的问题进行基于回归的问题。本文的目的是双重的:(i)我们在无线设置中考虑回归问题,并表明对抗性攻击可以打破基于DL的方法,并且(ii)我们将对抗性训练作为对抗性环境中的防御技术的有效性分析并表明基于DL的无线系统对攻击的鲁棒性有了显着改善。具体而言,本文考虑的无线应用程序是基于DL的功率分配,以多细胞大量多输入 - 销售输出系统的下行链路分配,攻击的目的是通过DL模型产生不可行的解决方案。我们扩展了基于梯度的对抗性攻击:快速梯度标志方法(FGSM),动量迭代FGSM和预计的梯度下降方法,以分析具有和没有对抗性训练的考虑的无线应用的敏感性。我们对这些攻击进行了分析深度神经网络(DNN)模型的性能,在这些攻击中,使用白色框和黑盒攻击制作了对抗性扰动。
translated by 谷歌翻译
This paper highlights vulnerabilities of deep learning-driven semantic communications to backdoor (Trojan) attacks. Semantic communications aims to convey a desired meaning while transferring information from a transmitter to its receiver. An encoder-decoder pair that is represented by two deep neural networks (DNNs) as part of an autoencoder is trained to reconstruct signals such as images at the receiver by transmitting latent features of small size over a limited number of channel uses. In the meantime, another DNN of a semantic task classifier at the receiver is jointly trained with the autoencoder to check the meaning conveyed to the receiver. The complex decision space of the DNNs makes semantic communications susceptible to adversarial manipulations. In a backdoor (Trojan) attack, the adversary adds triggers to a small portion of training samples and changes the label to a target label. When the transfer of images is considered, the triggers can be added to the images or equivalently to the corresponding transmitted or received signals. In test time, the adversary activates these triggers by providing poisoned samples as input to the encoder (or decoder) of semantic communications. The backdoor attack can effectively change the semantic information transferred for the poisoned input samples to a target meaning. As the performance of semantic communications improves with the signal-to-noise ratio and the number of channel uses, the success of the backdoor attack increases as well. Also, increasing the Trojan ratio in training data makes the attack more successful. In the meantime, the effect of this attack on the unpoisoned input samples remains limited. Overall, this paper shows that the backdoor attack poses a serious threat to semantic communications and presents novel design guidelines to preserve the meaning of transferred information in the presence of backdoor attacks.
translated by 谷歌翻译
尽管语义通信对大量任务表现出令人满意的性能,但语义噪声和系统的鲁棒性的影响尚未得到很好的研究。语义噪声是指预期的语义符号和接收到的语义符号之间的误导性,从而导致任务失败。在本文中,我们首先提出了一个框架,用于稳健的端到端语义通信系统来对抗语义噪声。特别是,我们分析了样品依赖性和样本无关的语义噪声。为了打击语义噪声,开发了具有重量扰动的对抗训练,以在训练数据集中纳入带有语义噪声的样品。然后,我们建议掩盖一部分输入,在该输入中,语义噪声经常出现,并通过噪声相关的掩蔽策略设计蒙版vector量化量化的量化自动编码器(VQ-VAE)。我们使用发射器共享的离​​散代码簿和接收器用于编码功能表示。为了进一步提高系统鲁棒性,我们开发了一个功能重要性模块(FIM),以抑制与噪声相关和任务无关的功能。因此,发射器只需要在代码簿中传输这些重要的任务相关功能的索引即可。仿真结果表明,所提出的方法可以应用于许多下游任务,并显着提高针对语义噪声的鲁棒性,并显着减少了传输开销。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
时间序列数据在许多现实世界中(例如,移动健康)和深神经网络(DNNS)中产生,在解决它们方面已取得了巨大的成功。尽管他们成功了,但对他们对对抗性攻击的稳健性知之甚少。在本文中,我们提出了一个通过统计特征(TSA-STAT)}称为时间序列攻击的新型对抗框架}。为了解决时间序列域的独特挑战,TSA-STAT对时间序列数据的统计特征采取限制来构建对抗性示例。优化的多项式转换用于创建比基于加性扰动的攻击(就成功欺骗DNN而言)更有效的攻击。我们还提供有关构建对抗性示例的统计功能规范的认证界限。我们对各种现实世界基准数据集的实验表明,TSA-STAT在欺骗DNN的时间序列域和改善其稳健性方面的有效性。 TSA-STAT算法的源代码可在https://github.com/tahabelkhouja/time-series-series-attacks-via-statity-features上获得
translated by 谷歌翻译
由于它们在各个域中的大量成功,深入的学习技术越来越多地用于设计网络入侵检测解决方案,该解决方案检测和减轻具有高精度检测速率和最小特征工程的未知和已知的攻击。但是,已经发现,深度学习模型容易受到可以误导模型的数据实例,以使所谓的分类决策不正确(对抗示例)。此类漏洞允许攻击者通过向恶意流量添加小的狡猾扰动来逃避检测并扰乱系统的关键功能。在计算机视觉域中广泛研究了深度对抗学习的问题;但是,它仍然是网络安全应用中的开放研究领域。因此,本调查探讨了在网络入侵检测领域采用对抗机器学习的不同方面的研究,以便为潜在解决方案提供方向。首先,调查研究基于它们对产生对抗性实例的贡献来分类,评估ML的NID对逆势示例的鲁棒性,并捍卫这些模型的这种攻击。其次,我们突出了调查研究中确定的特征。此外,我们讨论了现有的通用对抗攻击对NIDS领域的适用性,启动拟议攻击在现实世界方案中的可行性以及现有缓解解决方案的局限性。
translated by 谷歌翻译
Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget. In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion ($\textit{R}$-$\textit{D}$) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression. We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to $\sim$ 2.4$\times$ while achieving over 90$\%$ attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users' QoE.
translated by 谷歌翻译
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs.Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to * Pin-Yu Chen and Huan Zhang contribute equally to this work.
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)在各种现实世界的网络安全应用程序(例如网络和多媒体安全)中表现出了有希望的性能。但是,CNN结构的潜在脆弱性构成了主要的安全问题,因此不适合用于以安全为导向的应用程序,包括此类计算机网络。保护这些体系结构免受对抗性攻击,需要使用挑战性攻击的安全体系结构。在这项研究中,我们提出了一种基于合奏分类器的新型体系结构,该结构将1级分类(称为1C)的增强安全性与在没有攻击的情况下的传统2级分类(称为2C)的高性能结合在一起。我们的体系结构称为1.5级(Spritz-1.5c)分类器,并使用最终密度分类器,一个2C分类器(即CNNS)和两个并行1C分类器(即自动编码器)构造。在我们的实验中,我们通过在各种情况下考虑八次可能的对抗性攻击来评估我们提出的架构的鲁棒性。我们分别对2C和Spritz-1.5c体系结构进行了这些攻击。我们研究的实验结果表明,I-FGSM攻击对2C分类器的攻击成功率(ASR)是N-Baiot数据集训练的2C分类器的0.9900。相反,Spritz-1.5C分类器的ASR为0.0000。
translated by 谷歌翻译
在本讨论文件中,我们调查了有关机器学习模型鲁棒性的最新研究。随着学习算法在数据驱动的控制系统中越来越流行,必须确保它们对数据不确定性的稳健性,以维持可靠的安全至关重要的操作。我们首先回顾了这种鲁棒性的共同形式主义,然后继续讨论训练健壮的机器学习模型的流行和最新技术,以及可证明这种鲁棒性的方法。从强大的机器学习的这种统一中,我们识别并讨论了该地区未来研究的迫切方向。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
Video classification systems are vulnerable to adversarial attacks, which can create severe security problems in video verification. Current black-box attacks need a large number of queries to succeed, resulting in high computational overhead in the process of attack. On the other hand, attacks with restricted perturbations are ineffective against defenses such as denoising or adversarial training. In this paper, we focus on unrestricted perturbations and propose StyleFool, a black-box video adversarial attack via style transfer to fool the video classification system. StyleFool first utilizes color theme proximity to select the best style image, which helps avoid unnatural details in the stylized videos. Meanwhile, the target class confidence is additionally considered in targeted attacks to influence the output distribution of the classifier by moving the stylized video closer to or even across the decision boundary. A gradient-free method is then employed to further optimize the adversarial perturbations. We carry out extensive experiments to evaluate StyleFool on two standard datasets, UCF-101 and HMDB-51. The experimental results demonstrate that StyleFool outperforms the state-of-the-art adversarial attacks in terms of both the number of queries and the robustness against existing defenses. Moreover, 50% of the stylized videos in untargeted attacks do not need any query since they can already fool the video classification model. Furthermore, we evaluate the indistinguishability through a user study to show that the adversarial samples of StyleFool look imperceptible to human eyes, despite unrestricted perturbations.
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
在过去的几十年中,人工智能的兴起使我们有能力解决日常生活中最具挑战性的问题,例如癌症的预测和自主航行。但是,如果不保护对抗性攻击,这些应用程序可能不会可靠。此外,最近的作品表明,某些对抗性示例可以在不同的模型中转移。因此,至关重要的是避免通过抵抗对抗性操纵的强大模型进行这种可传递性。在本文中,我们提出了一种基于特征随机化的方法,该方法抵抗了八次针对测试阶段深度学习模型的对抗性攻击。我们的新方法包括改变目标网络分类器中的训练策略并选择随机特征样本。我们认为攻击者具有有限的知识和半知识条件,以进行最普遍的对抗性攻击。我们使用包括现实和合成攻击的众所周知的UNSW-NB15数据集评估了方法的鲁棒性。之后,我们证明我们的策略优于现有的最新方法,例如最强大的攻击,包括针对特定的对抗性攻击进行微调网络模型。最后,我们的实验结果表明,我们的方法可以确保目标网络并抵抗对抗性攻击的转移性超过60%。
translated by 谷歌翻译