自然语言是人类将任务传达给机器人的直觉方式。尽管自然语言(NL)是模棱两可的,但现实世界的任务及其安全要求需要明确传达。信号时间逻辑(STL)是一种形式的逻辑,可以用作描述机器人任务的多功能,表达和明确的形式语言。一方面,使用STL用于机器人域的现有工作通常要求最终用户在STL中表达任务规格,这是非专家用户的挑战。另一方面,从NL转换为STL规范的转换限制为特定片段。在这项工作中,我们提出了Dialoguestl,这是一种从(通常)模棱两可的NL描述中学习正确和简洁的STL公式的交互方法。我们结合了语义解析,基于预训练的变压器的语言模型以及少数用户演示的用户澄清,以预测编码NL任务描述的最佳STL公式。将NL映射到STL的一个优点是,在使用增强学习(RL)以识别机器人的控制策略方面,最近有很多工作。我们表明,我们可以使用深层学习技术来从学习的STL规范中学习最佳策略。我们证明DialogUestl具有高效,可扩展性和健壮性,并且在预测正确的STL公式方面具有很高的精度,并与Oracle用户进行了一些演示和一些交互。
translated by 谷歌翻译
教深入的强化学习(RL)代理在多任务环境中遵循说明是一个挑战性的问题。我们认为用户通过线性时间逻辑(LTL)公式定义了每个任务。但是,用户可能未知的复杂环境中的某些因果关系依赖性未知。因此,当人类用户指定说明时,机器人无法通过简单地按照给定的说明来解决任务。在这项工作中,我们提出了一个分层增强学习(HRL)框架,其中学习了符号过渡模型,以有效地制定高级计划,以指导代理有效地解决不同的任务。具体而言,符号过渡模型是通过归纳逻辑编程(ILP)学习的,以捕获状态过渡的逻辑规则。通过计划符号过渡模型的乘积和从LTL公式得出的自动机的乘积,代理可以解决因果关系依赖性,并将因果复杂问题分解为一系列简单的低级子任务。我们在离散和连续域中的三个环境上评估了提出的框架,显示了比以前的代表性方法的优势。
translated by 谷歌翻译
为了执行机器人操纵任务,核心问题是确定满足任务要求的合适轨迹。存在各种计算此类轨迹的方法,是学习和优化主要驾驶技术。我们的作品建立在从示范中学习(LFD)范式的基础上,专家展示了动作,机器人学会了模仿它们。但是,专家演示不足以捕获各种任务规格,例如掌握对象的时间。在本文中,我们提出了一种新方法,以考虑LFD技能中的正式任务规格。确切地说,我们利用了系统的时间属性的一种表达形式信号时间逻辑(STL),以制定任务规格并使用黑盒优化(BBO)来相应地调整LFD技能。我们使用多个任务展示了我们的方法如何使用STL和BBO来解决LFD限制。
translated by 谷歌翻译
Automata-based representations play an important role in control and planning in sequential decision-making, but obtaining high-level task knowledge for building automata is often difficult. Although large-scale generative language models (GLMs) can help automatically distill task knowledge, the textual outputs from GLMs are not directly utilizable in sequential decision-making. We resolve this problem by proposing a novel algorithm named GLM2FSA, which obtains high-level task knowledge, represented in a finite state automaton (FSA), from a given brief description of the task goal. GLM2FSA sends queries to a GLM for task knowledge in textual form and then builds a FSA to represent the textual knowledge. This algorithm fills the gap between text and automata-based representations, and the constructed FSA can be directly utilized in sequential decision-making. We provide examples to demonstrate how GLM2FSA constructs FSAs to represent knowledge encoded in the texts generated by the large-scale GLMs.
translated by 谷歌翻译
We propose a framework for learning a fragment of probabilistic computation tree logic (pCTL) formulae from a set of states that are labeled as safe or unsafe. We work in a relational setting and combine ideas from relational Markov Decision Processes with pCTL model-checking. More specifically, we assume that there is an unknown relational pCTL target formula that is satisfied by only safe states, and has a horizon of maximum $k$ steps and a threshold probability $\alpha$. The task then consists of learning this unknown formula from states that are labeled as safe or unsafe by a domain expert. We apply principles of relational learning to induce a pCTL formula that is satisfied by all safe states and none of the unsafe ones. This formula can then be used as a safety specification for this domain, so that the system can avoid getting into dangerous situations in future. Following relational learning principles, we introduce a candidate formula generation process, as well as a method for deciding which candidate formula is a satisfactory specification for the given labeled states. The cases where the expert knows and does not know the system policy are treated, however, much of the learning process is the same for both cases. We evaluate our approach on a synthetic relational domain.
translated by 谷歌翻译
In the learning from demonstration (LfD) paradigm, understanding and evaluating the demonstrated behaviors plays a critical role in extracting control policies for robots. Without this knowledge, a robot may infer incorrect reward functions that lead to undesirable or unsafe control policies. Recent work has proposed an LfD framework where a user provides a set of formal task specifications to guide LfD, to address the challenge of reward shaping. However, in this framework, specifications are manually ordered in a performance graph (a partial order that specifies relative importance between the specifications). The main contribution of this paper is an algorithm to learn the performance graph directly from the user-provided demonstrations, and show that the reward functions generated using the learned performance graph generate similar policies to those from manually specified performance graphs. We perform a user study that shows that priorities specified by users on behaviors in a simulated highway driving domain match the automatically inferred performance graph. This establishes that we can accurately evaluate user demonstrations with respect to task specifications without expert criteria.
translated by 谷歌翻译
我们演示了学习信号时间逻辑公式的第一个复发性神经网络体系结构,并介绍了公式推理方法的第一个系统比较。传统系统嵌入了许多未明确形式化的专业知识。有很大的兴趣学习表征此类系统理想行为的形式规格 - 即时逻辑中的公式,这些公式被系统的输出信号所满足。此类规格可用于更好地理解系统的行为并改善其下一次迭代的设计。以前的推断方法假设某些公式模板,或者对所有可能的模板进行了启发式枚举。这项工作提出了一种神经网络体系结构,该结构通过梯度下降来渗透公式结构,从而消除了施加任何特定模板的需求。它将公式结构和参数的学习结合在一个优化中。通过系统的比较,我们证明了该方法与列举和晶格方法相比,该方法达到相似或更好的错误分类率(MCR)。我们还观察到,不同的公式可以实现相似的MCR,从经验上证明了时间逻辑推断问题的不确定性。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
Text-based games present a unique class of sequential decision making problem in which agents interact with a partially observable, simulated environment via actions and observations conveyed through natural language. Such observations typically include instructions that, in a reinforcement learning (RL) setting, can directly or indirectly guide a player towards completing reward-worthy tasks. In this work, we study the ability of RL agents to follow such instructions. We conduct experiments that show that the performance of state-of-the-art text-based game agents is largely unaffected by the presence or absence of such instructions, and that these agents are typically unable to execute tasks to completion. To further study and address the task of instruction following, we equip RL agents with an internal structured representation of natural language instructions in the form of Linear Temporal Logic (LTL), a formal language that is increasingly used for temporally extended reward specification in RL. Our framework both supports and highlights the benefit of understanding the temporal semantics of instructions and in measuring progress towards achievement of such a temporally extended behaviour. Experiments with 500+ games in TextWorld demonstrate the superior performance of our approach.
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
本文介绍了逻辑代理的运行时间自检的全面框架,通过时间公理进行动态检查。通过使用定义为此目的的代理导向的间隔时间逻辑来指定这些公理。我们为此新逻辑定义了语法,语义和语用,专门针对代理的应用程序定制。在由此产生的框架中,我们包括并扩展过去的工作。
translated by 谷歌翻译
我们研究了逻辑规范给出的复杂任务的学习策略问题。最近的方法从给定的规范自动生成奖励功能,并使用合适的加强学习算法来学习最大化预期奖励的策略。然而,这些方法对需要高级别计划的复杂任务奠定了差。在这项工作中,我们开发了一种称为Dirl的组成学习方法,可交织高级别的规划和强化学习。首先,Dirl将规范编码为抽象图;直观地,图的顶点和边缘分别对应于状态空间的区域和更简单的子任务。我们的方法然后结合了增强学习,以便在Dijkstra风格的规划算法内为每个边缘(子任务)学习神经网络策略,以计算图表中的高级计划。对具有连续状态和行动空间的一套具有挑战性的控制基准测试的提出方法的评估表明它优于最先进的基线。
translated by 谷歌翻译
我们研究了从机器人交互的大型离线数据集学习一系列基于视觉的操纵任务的问题。为了实现这一目标,人类需要简单有效地将任务指定给机器人。目标图像是一种流行的任务规范形式,因为它们已经在机器人的观察空间接地。然而,目标图像也有许多缺点:它们对人类提供的不方便,它们可以通过提供导致稀疏奖励信号的所需行为,或者在非目标达到任务的情况下指定任务信息。自然语言为任务规范提供了一种方便而灵活的替代方案,而是随着机器人观察空间的接地语言挑战。为了可扩展地学习此基础,我们建议利用具有人群源语言标签的离线机器人数据集(包括高度最佳,自主收集的数据)。使用此数据,我们学习一个简单的分类器,该分类器预测状态的更改是否完成了语言指令。这提供了一种语言调节奖励函数,然后可以用于离线多任务RL。在我们的实验中,我们发现,在语言条件的操作任务中,我们的方法优于目标 - 图像规格和语言条件仿制技术超过25%,并且能够从自然语言中执行Visuomotor任务,例如“打开右抽屉“和”移动订书机“,在弗兰卡·埃米卡熊猫机器人上。
translated by 谷歌翻译
在环境抽象中进行高级搜索来指导低水平决策,这是一种有效的方法,是解决连续状态和行动空间中的长途任务的有效方法。最近的工作表明,可以以符号操作员和神经采样器的形式学习使这种二聚体计划的动作抽象,并且鉴于实现已知目标的符号谓词和演示。在这项工作中,我们表明,在动作往往会导致大量谓词发生变化的环境中,现有的方法不足。为了解决这个问题,我们建议学习具有忽略效果的操作员。激发我们方法的关键思想是,对谓词的每一个观察到的变化进行建模是不必要的。唯一需要建模的更改是高级搜索以实现指定目标所需的更改。在实验上,我们表明我们的方法能够学习具有忽略六个混合机器人域效果的操作员,这些企业能够解决一个代理,以解决具有不同初始状态,目标和对象数量的新任务变化,比几个基线要高得多。
translated by 谷歌翻译
众所周知,在漫长的地平线和稀疏的奖励任务中,加强学习(RL)是困难的,需要大量的培训步骤。加快该过程的标准解决方案是利用额外的奖励信号,将其塑造以更好地指导学习过程。在语言条件的RL的背景下,语言输入的抽象和概括属性为更有效地塑造奖励的方式提供了机会。在本文中,我们利用这一想法并提出了一种自动奖励塑形方法,代理商从一般语言目标中提取辅助目标。这些辅助目标使用问题生成(QG)和问题答案(QA)系统:它们包括导致代理商尝试使用其自己的轨迹重建有关全球目标的部分信息的问题。当它成功时,它会获得与对答案的信心成正比的内在奖励。这激励代理生成轨迹,这些轨迹明确解释了一般语言目标的各个方面。我们的实验研究表明,这种方法不需要工程师干预来设计辅助目标,可以通过有效指导探索来提高样品效率。
translated by 谷歌翻译
在人类空间中运营的机器人必须能够与人的自然语言互动,既有理解和执行指示,也可以使用对话来解决歧义并从错误中恢复。为此,我们介绍了教学,一个超过3,000人的互动对话的数据集,以完成模拟中的家庭任务。一个有关任务的Oracle信息的指挥官以自然语言与追随者通信。追随者通过环境导航并与环境进行互动,以完成从“咖啡”到“准备早餐”的复杂性不同的任务,提出问题并从指挥官获取其他信息。我们提出三个基准使用教学研究体现了智能挑战,我们评估了对话理解,语言接地和任务执行中的初始模型的能力。
translated by 谷歌翻译
近年来,在可解释的AI中取得了重大进展,因为了解深度学习模型的需求已成为人们对AI的信任和道德规范的越来越重要的重要性。顺序决策任务的可理解模型是一个特殊的挑战,因为它们不仅需要了解个人预测,而且需要了解与环境动态相互作用的一系列预测。我们提出了一个框架,用于学习顺序决策任务的可理解模型,在该模型中,使用时间逻辑公式对代理策略进行表征。给定一组试剂痕迹,我们首先使用一种捕获频繁的动作模式的新型嵌入方法聚集痕迹。然后,我们搜索逻辑公式,以解释不同簇中的代理策略。我们使用手工制作的专家政策和受过训练的强化学习代理商的痕迹评估了《星际争霸II》(SC2)中战斗场景的框架。我们为SC2环境实现了一个功能提取器,该功能提取器将痕迹作为高级特征的序列,描述了环境状态和代理重播中代理的本地行为。我们进一步设计了一个可视化工具,描述了环境中单元的运动,这有助于了解不同的任务条件如何导致每个跟踪群集中不同的代理行为模式。实验结果表明,我们的框架能够将试剂痕迹分离为不同的行为群体,我们的战略推理方法会产生一致,有意义且易于理解的策略描述。
translated by 谷歌翻译
In inverse reinforcement learning (IRL), a learning agent infers a reward function encoding the underlying task using demonstrations from experts. However, many existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). We address two limitations of existing IRL techniques. First, they require an excessive amount of data due to the information asymmetry between the expert and the learner. Second, most of these IRL techniques require solving the computationally intractable forward problem -- computing an optimal policy given a reward function -- in POMDPs. The developed algorithm reduces the information asymmetry while increasing the data efficiency by incorporating task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations. Further, the algorithm avoids a common source of algorithmic complexity by building on causal entropy as the measure of the likelihood of the demonstrations as opposed to entropy. Nevertheless, the resulting problem is nonconvex due to the so-called forward problem. We solve the intrinsic nonconvexity of the forward problem in a scalable manner through a sequential linear programming scheme that guarantees to converge to a locally optimal policy. In a series of examples, including experiments in a high-fidelity Unity simulator, we demonstrate that even with a limited amount of data and POMDPs with tens of thousands of states, our algorithm learns reward functions and policies that satisfy the task while inducing similar behavior to the expert by leveraging the provided side information.
translated by 谷歌翻译
将规则无缝整合到学习中(LFD)策略是启用AI代理的现实部署的关键要求。最近,信号时间逻辑(STL)已被证明是将规则作为时空约束的有效语言。这项工作使用蒙特卡洛树搜索(MCT)作为将STL规范集成到香草LFD策略中以提高约束满意度的一种手段。我们建议以STL鲁棒性值来增强MCT启发式,以使树的搜索偏向具有更高限制满意度的分支。虽然无域的方法可以应用于将STL规则在线整合到任何预训练的LFD算法中,但我们选择目标条件的生成对抗性模仿学习作为离线LFD策略。我们将提出的方法应用于规划轨迹的领域,用于在非较低机场周围的通用航空飞机。使用对现实世界数据进行训练的模拟器的结果显示了60%的性能比不使用STL启发式方法的基线LFD方法提高了性能。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译