在现实世界数据集中,结果标记歧义和主观性是无处不在的。尽管从业者通常以临时方式将所有数据点(实例)的模棱两可的结果标签结合在一起,以提高多级分类的准确性,但缺乏通过任何最佳标准来指导所有数据点标签组合的原则方法。为了解决这个问题,我们提出了信息理论分类准确性(ITCA),该标准可以在预测准确性(预测标签与实际标签一致)和分类分辨率(可预测的标签)(可预测的标签)之间进行平衡,这是平衡的。指导从业者如何结合模棱两可的结果标签。为了找到ITCA指示的最佳标签组合,我们提出了两种搜索策略:贪婪的搜索和广度优先搜索。值得注意的是,ITCA和两种搜索策略适应所有机器学习分类算法。再加上分类算法和搜索策略,ITCA有两个用途:提高预测准确性并识别模棱两可的标签。我们首先通过两种搜索策略来找到合成和真实数据的正确标签组合,首先验证ITCA是否可以实现高精度。然后,我们证明了ITCA在各种应用中的有效性,包括医学预后,癌症存活预测,用户人口统计预测和细胞类型分类。我们还通过研究Oracle和线性判别分析分类算法来提供对ITCA的理论见解。 Python软件包ITCA(可在https://github.com/jsb-ucla/itca上找到)ITCA和搜索策略。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
内核生存分析模型借助内核函数估计了个体生存分布,该分布衡量了任意两个数据点之间的相似性。可以使用深内核存活模型来学习这种内核函数。在本文中,我们提出了一种名为“生存内核”的新的深内核生存模型,该模型以模型解释和理论分析的方式将大型数据集扩展到大型数据集。具体而言,根据最近开发的训练集压缩方案,用于分类和回归,将培训数据分为簇,称为内核网,我们将其扩展到生存分析设置。在测试时间,每个数据点表示为这些簇的加权组合,每个数据点可以可视化。对于生存核的特殊情况,我们在预测的生存分布上建立了有限样本误差,该误差是最佳的,该误差是最佳的。尽管使用上述内核网络压缩策略可以实现测试时间的可伸缩性,但训练过程中的可伸缩性是通过基于XGBoost(例如Xgboost)的暖启动程序和加速神经建筑搜索的启发式方法来实现的。在三个不同大小的标准生存分析数据集(大约300万个数据点)上,我们表明生存核具有很高的竞争力,并且在一致性指数方面经过测试的最佳基线。我们的代码可在以下网址找到:https://github.com/georgehc/survival-kernets
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
决策森林(森林),尤其是随机森林和梯度促进树木,与许多监督学习场景中的其他方法相比,已经证明了最先进的准确性。尤其是,森林在表格数据中占主导地位,即当特征空间非结构化时,因此信号是特征指数置换的不变性。然而,在存在于多种多样(例如图像,文本和语音)深网(网络)(特别是卷积深网(Convnets))上的结构化数据中,倾向于优于森林。我们猜想至少部分原因是网络的输入不仅仅是特征幅度,也是其索引。相反,天真的森林实施未能明确考虑特征指数。最近提出的森林方法表明,对于每个节点,森林从某些特定分布中隐式采样一个随机矩阵。这些森林像某些类别的网络一样,通过将特征空间划分为对应于线性函数的凸多物体来学习。我们以这种方法为基础,并表明人们可以以多种感知方式选择分布来纳入特征区域。我们在数据上活在三个不同的流形上的数据上证明了经验性能:圆环,图像和时间序列。此外,我们证明了其在多元模拟环境中的强度,并且在预测癫痫患者的手术结果方面也表现出了优越性,并从非运动脑区域的原始立体定向EEG数据中预测运动方向。在所有模拟和真实数据中,歧管随机森林(MORF)算法的表现优于忽略特征空间结构并挑战Convnets的性能。此外,MORF运行迅速,并保持解释性和理论上的理由。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
分类链是一种用于在多标签分类中建模标签依赖性的有效技术。但是,该方法需要标签的固定静态顺序。虽然理论上,任何顺序都足够了,实际上,该订单对最终预测的质量具有大量影响。动态分类链表示每个实例对分类的想法,可以动态选择预测标签的顺序。这种方法的天真实现的复杂性是禁止的,因为它需要训练一系列分类器,以满足标签的每种可能置换。为了有效地解决这个问题,我们提出了一种基于随机决策树的新方法,该方法可以动态地选择每个预测的标签排序。我们凭经验展示了下一个标签的动态选择,通过在否则不变的随机决策树模型下使用静态排序。 %和实验环境。此外,我们还展示了基于极端梯度提升树的替代方法,其允许更具目标的动态分级链训练。我们的结果表明,该变体优于随机决策树和其他基于树的多标签分类方法。更重要的是,动态选择策略允许大大加速培训和预测。
translated by 谷歌翻译
我们在分类的背景下研究公平,其中在接收器的曲线下的区域(AUC)下的区域测量的性能。当I型(误报)和II型(假阴性)错误都很重要时,通常使用AUC。然而,相同的分类器可以针对不同的保护组具有显着变化的AUC,并且在现实世界中,通常希望减少这种交叉组差异。我们解决如何选择其他功能,以便最大地改善弱势群体的AUC。我们的结果表明,功能的无条件方差不会通知我们关于AUC公平,而是类条件方差。使用此连接,我们基于功能增强(添加功能)来开发一种新颖的方法Fairauc,以减轻可识别组之间的偏差。我们评估综合性和现实世界(Compas)数据集的Fairauc,并发现它对于相对于基准,最大限度地提高了总体AUC并最大限度地减少了组之间的偏见的基准,它显着改善了弱势群体的AUC。
translated by 谷歌翻译
数据标签噪声在监督学习应用中长期以来一直是一个重要的问题,因为它影响了许多广泛使用的分类方法的有效性。最近,重要的现实世界应用,如医学诊断和网络安全,已经产生了在Neyman-Pearson(NP)分类范式的重新兴趣,这在优选级别下限制了更严重的错误类型(例如,I错误)虽然最小化另一个(例如,II型错误)。但是,在标签噪声下对NP范例几乎没有研究。它有点令人惊讶的是,即使普通的NP分类器忽略训练阶段中的标签噪声,它们仍然能够控制I型错误,具有高概率。但是,他们支付的价格是I误差类型的过度保守性,因此电源的显着下降(即,1美元,II型错误)。假设领域专家在腐败严重程度上提供下限,我们提出了第一个理论支持算法,它适应NP范例下的训练标签噪声。由此产生的分类器不仅在所需水平下以高概率控制I误差,而且还提高功率。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
本文开发了新型的保形方法,以测试是否从与参考集相同的分布中采样了新的观察结果。以创新的方式将感应性和偏置的共形推断融合,所描述的方法可以以原则性的方式基于已知的分布式数据的依赖侧信息重新权重标准p值,并且可以自动利用最强大的优势来自任何一级和二进制分类器的模型。该解决方案可以通过样品分裂或通过新颖的转置交叉验证+方案来实现,该方案与现有的交叉验证方法相比,由于更严格的保证,这也可能在共形推理的其他应用中有用。在研究错误的发现率控制和在具有几个可能的离群值的多个测试框架内的虚假发现率控制和功率之后,提出的解决方案被证明通过模拟以及用于图像识别和表格数据的应用超过了标准的共形P值。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
We introduce a new rule-based optimization method for classification with constraints. The proposed method takes advantage of linear programming and column generation, and hence, is scalable to large datasets. Moreover, the method returns a set of rules along with their optimal weights indicating the importance of each rule for learning. Through assigning cost coefficients to the rules and introducing additional constraints, we show that one can also consider interpretability and fairness of the results. We test the performance of the proposed method on a collection of datasets and present two case studies to elaborate its different aspects. Our results show that a good compromise between interpretability and fairness on the one side, and accuracy on the other side, can be obtained by the proposed rule-based learning method.
translated by 谷歌翻译
我们为学习限制建立了混合整数优化的广泛方法论基础。我们提出了一种用于数据驱动决策的端到端管道,其中使用机器学习直接从数据中学习限制和目标,并且培训的模型嵌入在优化配方中。我们利用许多机器学习方法的混合整数优化 - 焦点,包括线性模型,决策树,集合和多层的感知。对多种方法的考虑允许我们捕获决策,上下文变量和结果之间的各种潜在关系。我们还使用观察结果的凸船体来表征决策信任区域,以确保可信的建议并避免推断。我们有效地使用列生成和聚类来纳入这个表示。结合域驱动的约束和客观术语,嵌入式模型和信任区域定义了处方生成的混合整数优化问题。我们将此框架实施为从业者的Python包(OptiCl)。我们展示了化疗优化和世界食物计划规划中的方法。案例研究说明了在生成高质量处方的框架中的框架,由信任区域添加的值,加入多个机器学习方法以及包含多个学习约束的框架。
translated by 谷歌翻译
相关特征的识别,即确定系统的过程或属性的驱动变量,是对具有大量变量的数据集分析的重要组成部分。量化这些特征相关性的数学严格方法是相互信息。相互信息确定特征在其联合相互依赖与感兴趣的财产方面的相关性。但是,相互信息需要作为输入概率分布,这不能可靠地从连续分布(例如长度或能量)等连续分布中估计。在这里,我们介绍了总累积共同信息(TCMI),这是对相互依赖关系的相关性的度量,该信息将相互信息扩展到基于累积概率分布的连续分布的随机变量。 TCMI是一种非参数,鲁棒和确定性的度量,可促进具有不同基数的特征集之间的比较和排名。 TCMI诱导的排名允许特征选择,即,考虑到数据示例的数量以及一组变量集的基数,识别与感兴趣属性的非线性统计学相关的变量集的识别。我们通过模拟数据评估测量的性能,将其性能与类似的多元依赖性度量进行比较,并在一组标准数据集中证明了我们的功能选择方法的有效性以及材料科学中的典型情况。
translated by 谷歌翻译
群集分析需要许多决定:聚类方法和隐含的参考模型,群集数,通常,几个超参数和算法调整。在实践中,一个分区产生多个分区,基于验证或选择标准选择最终的分区。存在丰富的验证方法,即隐式或明确地假设某个聚类概念。此外,它们通常仅限于从特定方法获得的分区上操作。在本文中,我们专注于可以通过二次或线性边界分开的群体。参考集群概念通过二次判别符号函数和描述集群大小,中心和分散的参数定义。我们开发了两个名为二次分数的群集质量标准。我们表明这些标准与从一般类椭圆对称分布产生的组一致。对这种类型的组追求在应用程序中是常见的。研究了与混合模型和模型的聚类的似然理论的连接。基于Bootstrap重新采样的二次分数,我们提出了一个选择规则,允许在许多聚类解决方案中选择。所提出的方法具有独特的优点,即它可以比较不能与其他最先进的方法进行比较的分区。广泛的数值实验和实际数据的分析表明,即使某些竞争方法在某些设置中出现优越,所提出的方法也实现了更好的整体性能。
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译