数据标签噪声在监督学习应用中长期以来一直是一个重要的问题,因为它影响了许多广泛使用的分类方法的有效性。最近,重要的现实世界应用,如医学诊断和网络安全,已经产生了在Neyman-Pearson(NP)分类范式的重新兴趣,这在优选级别下限制了更严重的错误类型(例如,I错误)虽然最小化另一个(例如,II型错误)。但是,在标签噪声下对NP范例几乎没有研究。它有点令人惊讶的是,即使普通的NP分类器忽略训练阶段中的标签噪声,它们仍然能够控制I型错误,具有高概率。但是,他们支付的价格是I误差类型的过度保守性,因此电源的显着下降(即,1美元,II型错误)。假设领域专家在腐败严重程度上提供下限,我们提出了第一个理论支持算法,它适应NP范例下的训练标签噪声。由此产生的分类器不仅在所需水平下以高概率控制I误差,而且还提高功率。
translated by 谷歌翻译
大多数现有的分类方法旨在最大限度地减少整体错误分类错误率,但是,在应用程序中,不同类型的错误可能具有不同的后果。要考虑到这种不对称问题,已经开发了两个流行的范式,即Neyman-Pearson(NP)范式和成本敏感(CS)范式。与CS范例相比,NP PARADIGM不需要提高成本规范。最先前的NP Paradigm的作品集中在二进制案例上。在这项工作中,我们通过将其连接到CS问题并提出两种算法来研究多级NP问题。我们将NP Oracle不等式扩展到二进制案例到多级案例的一致性,并显示我们的两种算法在某些条件下享受这些属性。模拟和实际数据研究表明了我们算法的有效性。据我们所知,这是第一个通过具有理论保证的成本敏感的学习技术来解决多级NP问题的工作。所提出的算法在CRAN上的R包“NPCS”中实现。
translated by 谷歌翻译
经典的错误发现率(FDR)控制程序提供了强大而可解释的保证,而它们通常缺乏灵活性。另一方面,最近的机器学习分类算法是基于随机森林(RF)或神经网络(NN)的算法,具有出色的实践表现,但缺乏解释和理论保证。在本文中,我们通过引入新的自适应新颖性检测程序(称为Adadetect)来使这两个相遇。它将多个测试文献的最新作品范围扩展到高维度的范围,尤其是Yang等人的范围。 (2021)。显示AD​​ADETECT既可以强烈控制FDR,又具有在特定意义上模仿甲骨文之一的力量。理论结果,几个基准数据集上的数值实验以及对天体物理数据的应用,我们的方法的兴趣和有效性得到了证明。特别是,虽然可以将AdadEtect与任何分类器结合使用,但它在带有RF的现实世界数据集以及带有NN的图像上特别有效。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
即使是最精确的经济数据集也具有嘈杂,丢失,离散化或私有化的变量。实证研究的标准工作流程涉及数据清理,然后是数据分析,通常忽略数据清洁的偏差和方差后果。我们制定了具有损坏数据的因果推理的半造型模型,以包括数据清洁和数据分析。我们提出了一种新的数据清洁,估计和推理的新的端到端程序,以及数据清洁调整的置信区间。通过有限的示例参数,我们证明了因果关系参数的估算器的一致性,高斯近似和半游戏效率。 Gaussian近似的速率为N ^ { - 1/2} $,如平均治疗效果,如平均治疗效果,并且优雅地为当地参数劣化,例如特定人口统计的异构治疗效果。我们的关键假设是真正的协变量是较低的等级。在我们的分析中,我们为矩阵完成,统计学习和半统计统计提供了非对症的理论贡献。我们验证了数据清洁调整的置信区间隔的覆盖范围校准,以类似于2020年美国人口普查中实施的差异隐私。
translated by 谷歌翻译
经典的同学回归涉及在真实信号的单调性约束下进行非参数估计。我们考虑了此生成过程的变化,我们将其称为对抗符号折磨的等渗(\ texttt {asci})回归。在此\ texttt {asci}设置下,对手可以完全访问真实的等渗响应,并且可以自由签名。鉴于这些标志浪费的响应,估计真正的单调信号是一项高度挑战的任务。值得注意的是,标志腐败旨在违反单调性,并可能在损坏的响应术语之间引起严重的依赖。从这个意义上讲,\ texttt {asci}回归可以被视为等渗回归的对抗压力测试。我们的动机是通过理解在这种对抗性环境下对单调信号的有效稳健估计是否可行的驱动。我们开发\ texttt {ascifit},这是\ texttt {asci}设置下的三步估计过程。 \ texttt {ascifit}过程在概念上是简单的,易于使用现有软件实现,并包括使用至关重要的预处理和后处理更正应用\ texttt {pava}。我们对该程序进行了形式化,并以急剧高概率上限和最小值下限的形式证明其理论保证。我们通过详细的模拟说明了我们的发现。
translated by 谷歌翻译
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability ρ ∈ [0, 0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the conditional probability P ( Ŷ |X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
translated by 谷歌翻译
It is widely believed that given the same labeling budget, active learning algorithms like uncertainty sampling achieve better predictive performance than passive learning (i.e. uniform sampling), albeit at a higher computational cost. Recent empirical evidence suggests that this added cost might be in vain, as uncertainty sampling can sometimes perform even worse than passive learning. While existing works offer different explanations in the low-dimensional regime, this paper shows that the underlying mechanism is entirely different in high dimensions: we prove for logistic regression that passive learning outperforms uncertainty sampling even for noiseless data and when using the uncertainty of the Bayes optimal classifier. Insights from our proof indicate that this high-dimensional phenomenon is exacerbated when the separation between the classes is small. We corroborate this intuition with experiments on 20 high-dimensional datasets spanning a diverse range of applications, from finance and histology to chemistry and computer vision.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
在监督的学习中,已经表明,在许多情况下,数据中的标签噪声可以插值而不会受到测试准确性的处罚。我们表明,插值标签噪声会引起对抗性脆弱性,并证明了第一个定理显示标签噪声和对抗性风险在数据分布方面的依赖性。我们的结果几乎是尖锐的,而没有考虑学习算法的电感偏差。我们还表明,感应偏置使标签噪声的效果更强。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
Statistical risk assessments inform consequential decisions such as pretrial release in criminal justice, and loan approvals in consumer finance. Such risk assessments make counterfactual predictions, predicting the likelihood of an outcome under a proposed decision (e.g., what would happen if we approved this loan?). A central challenge, however, is that there may have been unmeasured confounders that jointly affected past decisions and outcomes in the historical data. This paper proposes a tractable mean outcome sensitivity model that bounds the extent to which unmeasured confounders could affect outcomes on average. The mean outcome sensitivity model partially identifies the conditional likelihood of the outcome under the proposed decision, popular predictive performance metrics (e.g., accuracy, calibration, TPR, FPR), and commonly-used predictive disparities. We derive their sharp identified sets, and we then solve three tasks that are essential to deploying statistical risk assessments in high-stakes settings. First, we propose a doubly-robust learning procedure for the bounds on the conditional likelihood of the outcome under the proposed decision. Second, we translate our estimated bounds on the conditional likelihood of the outcome under the proposed decision into a robust, plug-in decision-making policy. Third, we develop doubly-robust estimators of the bounds on the predictive performance of an existing risk assessment.
translated by 谷歌翻译
我们介绍了学习然后测试,校准机器学习模型的框架,使其预测满足明确的,有限样本统计保证,无论底层模型如何和(未知)数据生成分布。框架地址,以及在其他示例中,在多标签分类中的错误发现速率控制,在实例分割中交叉联盟控制,以及同时控制分类或回归中的异常检测和置信度覆盖的类型误差。为实现这一目标,我们解决了一个关键的技术挑战:控制不一定单调的任意风险。我们的主要洞察力是将风险控制问题重新构建为多个假设检测,使技术和数学论据不同于先前文献中的技术。我们使用我们的框架为多个核心机器学习任务提供新的校准方法,在计算机视觉中具有详细的工作示例。
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译
Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of ``benign overfitting," in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.
translated by 谷歌翻译
Algorithmic fairness plays an increasingly critical role in machine learning research. Several group fairness notions and algorithms have been proposed. However, the fairness guarantee of existing fair classification methods mainly depends on specific data distributional assumptions, often requiring large sample sizes, and fairness could be violated when there is a modest number of samples, which is often the case in practice. In this paper, we propose FaiREE, a fair classification algorithm that can satisfy group fairness constraints with finite-sample and distribution-free theoretical guarantees. FaiREE can be adapted to satisfy various group fairness notions (e.g., Equality of Opportunity, Equalized Odds, Demographic Parity, etc.) and achieve the optimal accuracy. These theoretical guarantees are further supported by experiments on both synthetic and real data. FaiREE is shown to have favorable performance over state-of-the-art algorithms.
translated by 谷歌翻译