Estimating treatment effects is one of the most challenging and important tasks of data analysts. In many applications, like online marketing and personalized medicine, treatment needs to be allocated to the individuals where it yields a high positive treatment effect. Uplift models help select the right individuals for treatment and maximize the overall treatment effect (uplift). A major challenge in uplift modeling concerns model evaluation. Previous literature suggests methods like the Qini curve and the transformed outcome mean squared error. However, these metrics suffer from variance: their evaluations are strongly affected by random noise in the data, which renders their signals, to a certain degree, arbitrary. We theoretically analyze the variance of uplift evaluation metrics and derive possible methods of variance reduction, which are based on statistical adjustment of the outcome. We derive simple conditions under which the variance reduction methods improve the uplift evaluation metrics and empirically demonstrate their benefits on simulated and real-world data. Our paper provides strong evidence in favor of applying the suggested variance reduction procedures by default when evaluating uplift models on RCT data.
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
在许多学科中,异质治疗效果(HTE)的估计至关重要,从个性化医学到经济学等等。在随机试验和观察性研究中,随机森林已被证明是一种灵活而有力的HTE估计方法。尤其是Athey,Tibshirani和Wager(2019)引入的“因果森林”,以及包装GRF中的R实施。 Seibold,Zeileis和Hothorn(2018)引入了一种称为“基于模型的森林”的相关方法,该方法旨在随机试验,并同时捕获预后和预测变量的效果,并在R包装模型中进行模块化实现。 。在这里,我们提出了一种统一的观点,它超出了理论动机,并研究了哪些计算元素使因果森林如此成功,以及如何将它们与基于模型的森林的优势融合在一起。为此,我们表明,可以通过相同的参数和L2损耗下加性模型的模型假设来理解这两种方法。这种理论上的见解使我们能够实施“基于模型的因果林”的几种口味,并在计算机中剖析其不同元素。将原始的因果森林和基于模型的森林与基准研究中的新混合版本进行了比较,该研究探讨了随机试验和观察环境。在随机设置中,两种方法都执行了AKIN。如果在数据生成过程中存在混淆,我们发现与相应倾向的治疗指标的局部核心是良好性能的主要驱动力。结果的局部核心不太重要,并且可以通过相对于预后和预测效应的同时拆分选择来代替或增强。
translated by 谷歌翻译
估算随机实验的因果效应是临床研究的核心。降低这些分析中的统计不确定性是统计学家的重要目标。注册管理机构,事先审判和健康记录构成了对患者的历史数据汇编,其在可能是可利用至此的患者下的历史数据。但是,大多数历史借贷方法通过牺牲严格的I型错误率控制来达到方差的减少。在这里,我们建议使用利用线性协变调整的历史数据来提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上培训预后模型,然后使用线性回归估计治疗效果,同时调整试验受试者预测结果(其预后分数)。我们证明,在某些条件下,这种预后调整程序在大类估算仪中获得了最低差异。当不符合这些条件时,预后的协变量调整仍然比原始协变量调整更有效,并且效率的增益与上述预后模型的预测准确性的衡量标准成正比,与原始协变量的线性关系的预测准确性。我们展示了使用模拟的方法和阿尔茨海默病的临床试验的再分析,并观察平均平均误差的有意义减少和估计方差。最后,我们提供了一种简化的渐近方差公式,使得能够计算这些收益的功率计算。在使用预后模型的预后模型中,可以实现10%和30%的样品尺寸减少。
translated by 谷歌翻译
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
决策者通常想确定为某些干预或治疗最有效的个人,以决定要治疗谁。在这种情况下,理想情况下,决策者希望根据其个人因果影响对潜在的治疗者进行排名。但是,可用于估计因果效应的历史数据可能会混淆,因此,准确地估计效果是不可能的。我们提出了一个关于历史数据的新的且较少的限制性假设,称为排名保存假设(RPA),即使无法准确估算效果本身,也可以一致地估计单个效应的排名。重要的是,我们发现,当混杂偏见更大的因果效应的个体更大时,混淆有助于估计因果效应的排名,即使不是这种情况,也可以纠正混淆的任何有害影响,也可以纠正满足RPA时更大的培训数据。然后,我们在分析上表明,可以在各种情况下满足RPA,包括在线广告和客户保留等常见的业务应用程序。我们在在线广告的背景下以一个经验示例来支持这一发现。该示例还显示了如何在实践中评估混杂模型的决策。主要要点是,传统上可能被认为是因果估计的“好”数据(即,不满意的数据)可能不是必需的,而对于做出良好的因果决定,因此治疗作业方法可能比我们在面前允许他们荣誉更好混淆。
translated by 谷歌翻译
现代纵向研究在许多时间点收集特征数据,通常是相同的样本大小顺序。这些研究通常受到{辍学}和积极违规的影响。我们通过概括近期增量干预的效果(转换倾向分数而不是设置治疗价值)来解决这些问题,以适应多种结果和主题辍学。当条件忽略(不需要治疗阳性)时,我们给出了识别表达式的增量干预效果,并导出估计这些效果的非参数效率。然后我们提出了高效的非参数估计器,表明它们以快速参数速率收敛并产生均匀的推理保证,即使在较慢的速率下灵活估计滋扰函数。我们还研究了新型无限时间范围设置中的更传统的确定性效果的增量干预效应的方差比,其中时间点的数量可以随着样本大小而生长,并显示增量干预效果在统计精度下产生近乎指数的收益这个设置。最后,我们通过模拟得出结论,并在研究低剂量阿司匹林对妊娠结果的研究中进行了方法。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
预测风险评分越来越多地用于指导复杂环境(尤其是医疗保健)中的临床或其他干预措施。直接更新用于指导干预措施的风险评分会导致风险估计。我们建议使用“保留集”(未接受风险评分引导干预措施的人口子集)进行更新,以防止这种情况。由于保留集中的样本并不能从风险预测中受益,因此其规模必须权衡更新的风险评分的性能,同时最大程度地减少被保留样品的数量。我们证明,这种方法的表现优于简单的替代方案,并且通过定义一般的损失函数描述了可以轻松识别最佳保持尺寸(OHS)的条件。我们引入了OHS估计的参数和半参数算法,并证明了它们在近期对先兆子痫的风险评分上的使用。基于这些结果,我们认为保留集是安全,可行且易于实施的手段,可以安全地更新预测风险得分。
translated by 谷歌翻译
我们考虑随机对照试验的差异问题,通过使用与结果相关的协变量但与治疗无关。我们提出了一种机器学习回归调整的处理效果估算器,我们称之为Mlrate。 Mlrate使用机器学习预测结果来降低估计方差。它采用交叉配件来避免过度偏置,在一般条件下,我们证明了一致性和渐近正常性。 Mlrate对机器学习的预测较差的鲁棒步骤:如果预测与结果不相关,则估计器执行渐近的差异,而不是标准差异估计器,而如果预测与结果高度相关,则效率提升大。在A / A测试中,对于在Facebook实验中通常监测的一组48个结果指标,估计器的差异比简单差分估计器差异超过70%,比仅调整的共同单变量过程约19%用于结果的预测值。
translated by 谷歌翻译
The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of Interventions and Counterfactuals. The definition leads to EV statistics for individual counterfactuals, and to non-parametric effect estimators for sets of counterfactuals (i.e., for samples). We use this new definition to discuss several issues that have baffled the original counterfactual formulation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of multiple effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to current predictive and explaining techniques. Methodologically, the definition also allows us to replace the parametric, and generally ill-posed, estimation problems that followed the counterfactual definition by combinatorial enumeration problems in non-experimental samples. We use this framework to generalize popular supervised, explaining, and causal-effect estimators, improving their performance across three dimensions (External Validity, Unconfoundness and Accuracy) and enabling their use in non-i.i.d. samples. We demonstrate gains over the state-of-the-art in out-of-sample prediction, intervention effect prediction and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.
translated by 谷歌翻译
基于森林的方法最近在非参数治疗效应估计中获得了普及。在这一工作方面,我们引入了因果生存森林,可用于在可能右估计结果的生存和观察环境中估计异质治疗效果。我们的方法依赖于正交估计方程来在不满意的情况下对审查和选择效果进行鲁棒性调整。在我们的实验中,我们发现相对于许多基线的表现良好的方法。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译
在上下文土匪中,非政策评估(OPE)已在现实世界中迅速采用,因为它仅使用历史日志数据就可以离线评估新政策。不幸的是,当动作数量较大时,现有的OPE估计器(其中大多数是基于反相反的得分加权)会严重降解,并且可能会遭受极端偏见和差异。这挫败了从推荐系统到语言模型的许多应用程序中使用OPE。为了克服这个问题,我们提出了一个新的OPE估计器,即当动作嵌入在动作空间中提供结构时,利用边缘化的重要性权重。我们表征了所提出的估计器的偏差,方差和平方平方误差,并分析了动作嵌入提供了比常规估计器提供统计益处的条件。除了理论分析外,我们还发现,即使由于大量作用,现有估计量崩溃,经验性绩效的改善也可以实现可靠的OPE。
translated by 谷歌翻译
作为因果参数的平均处理效果(ATE)的估计分为两个步骤,其中在第一步中,建模治疗和结果以包含潜在的混乱,并且在第二步中,将预测插入到其中ATE估计器,例如增强逆概率加权(AIPW)估计器。由于对混乱与治疗和结果之间的非线性或未知关系的担忧,有兴趣应用非参数学方法,例如机器学习(ML)算法。一些文献建议使用两个单独的神经网络(NNS),其中网络的参数没有正则化,除了NN优化中的随机梯度下降(SGD)。我们的模拟表明,如果没有使用正则化,则AIPW估计器会受到广泛的影响。我们提出了AIPW(称为Naipw)的正常化,这在某些情况下可以有所帮助。 Naipw,可否提供与AIPW相同的属性,即双重稳健性和正交性属性。此外,如果第一步算法收敛到足够快,则在监管条件下,Naipw将是渐近正常的。我们还在NNS上施加小于中等L1正则化的偏差和方差方面比较AIPW和NAIPW的性能。
translated by 谷歌翻译
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that 'black-box' rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20 percent more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70 percent of this gain.
translated by 谷歌翻译
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select the changes that would have improved the system performance. This work is illustrated by experiments on the ad placement system associated with the Bing search engine.
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译