我们介绍了两个块坐标下降算法,以解决使用普通微分方程(ODE)作为动态约束的优化问题。该算法无需实施直接或伴随的灵敏度分析方法来评估损失功能梯度。它们是由对原始问题重新制作的重新制作,作为与平等约束的等效优化问题。该算法自然遵循旨在根据ODE求解器恢复梯度定位算法的步骤,该算法明确解释了ODE溶液的灵敏度。在我们的第一个提出的算法中,我们避免通过将ODE求解器集成为隐式约束序列来明确求解ODE。在我们的第二个算法中,我们使用ODE求解器重置ODE解决方案,但没有直接使用伴随灵敏度分析方法。这两种算法都接受微型批量实施,并从基于GPU的并行化中显示出显着的效率优势。当应用于学习Cucker-Smale模型的参数时,我们演示了该算法的性能。将算法与基于具有敏感性分析能力的ODE求解器的梯度下降算法进行比较,使用Pytorch和JAX实现,具有各种状态数量的敏感性分析能力。实验结果表明,所提出的算法至少比Pytorch实现快4倍,并且比JAX实现快至少16倍。对于大版本的Cucker-Smale模型,JAX实现的速度比基于灵敏度分析的实现快数千倍。此外,我们的算法在培训和测试数据上都会产生更准确的结果。对于实施实时参数估计(例如诊断算法)的算法,计算效率的这种提高至关重要。
translated by 谷歌翻译
Neural ordinary differential equations (neural ODEs) have emerged as a novel network architecture that bridges dynamical systems and deep learning. However, the gradient obtained with the continuous adjoint method in the vanilla neural ODE is not reverse-accurate. Other approaches suffer either from an excessive memory requirement due to deep computational graphs or from limited choices for the time integration scheme, hampering their application to large-scale complex dynamical systems. To achieve accurate gradients without compromising memory efficiency and flexibility, we present a new neural ODE framework, PNODE, based on high-level discrete adjoint algorithmic differentiation. By leveraging discrete adjoint time integrators and advanced checkpointing strategies tailored for these integrators, PNODE can provide a balance between memory and computational costs, while computing the gradients consistently and accurately. We provide an open-source implementation based on PyTorch and PETSc, one of the most commonly used portable, scalable scientific computing libraries. We demonstrate the performance through extensive numerical experiments on image classification and continuous normalizing flow problems. We show that PNODE achieves the highest memory efficiency when compared with other reverse-accurate methods. On the image classification problems, PNODE is up to two times faster than the vanilla neural ODE and up to 2.3 times faster than the best existing reverse-accurate method. We also show that PNODE enables the use of the implicit time integration methods that are needed for stiff dynamical systems.
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
我们研究了科学计算的数值算法的元学习,它将一般算法结构的数学驱动,手工设计与特定的任务类的数据驱动的适应相结合。这表示从数值分析中的经典方法的偏离,这通常不具有这种基于学习的自适应。作为一个案例研究,我们开发了一种机器学习方法,基于Runge-Kutta(RK)Integrator架构,自动学习用于常用方程式(ODES)形式的初始值问题的有效求解器。通过组合神经网络近似和元学习,我们表明我们可以获得针对目标差分方程系的高阶集成商,而无需手头计算积分器系数。此外,我们证明,在某些情况下,我们可以获得古典RK方法的卓越性能。这可以归因于通过该方法识别和利用ode系列的某些属性。总的来说,这项工作展示了基于学习的基于学习的方法,用于设计差分方程的数值解的算法,一种方法可以容易地扩展到其他数值任务。
translated by 谷歌翻译
我们提出了Theseus,这是一个有效的应用程序不合时宜的开源库,用于在Pytorch上构建的可区分非线性最小二乘(DNL)优化,为机器人技术和视觉中的端到端结构化学习提供了一个共同的框架。现有的DNLS实施是特定应用程序的,并且并不总是纳入许多对效率重要的成分。 Theseus是应用程序不可静止的,正如我们使用的几个示例应用程序所用的,这些应用程序是使用相同的基础可区分组件构建的,例如二阶优化器,标准成本功能和Lie组。为了提高效率,TheseUS纳入了对稀疏求解器,自动矢量化,批处理,GPU加速度和梯度计算的支持,并具有隐式分化和直接损耗最小化。我们在一组应用程序中进行了广泛的性能评估,显示出这些功能时显示出明显的效率提高和更好的可扩展性。项目页面:https://sites.google.com/view/theseus-ai
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
随机微分方程(SDE)用于描述各种复杂的随机动力学系统。学习SDE中的隐藏物理学对于揭示对这些系统的随机和非线性行为的基本理解至关重要。我们提出了一个灵活且可扩展的框架,用于训练人工神经网络,以学习代表SDE中隐藏物理的本构方程。所提出的随机物理学的神经普通微分方程框架(Spinode)通过已知的SDE结构(即已知的物理学)传播随机性,以产生一组确定性的ODE,以描述随机状态的统计矩的时间演变。然后,Spinode使用ODE求解器预测矩轨迹。 Spinode通过将预测的矩与从数据估计的矩匹配来学习隐藏物理的神经网络表示。利用了自动分化和微型批次梯度下降的最新进展,并利用了伴随灵敏度,以建立神经网络的未知参数。我们在三个基准内案例研究上展示了Spinod,并分析了框架的数值鲁棒性和稳定性。 Spinode提供了一个有希望的新方向,用于系统地阐明具有乘法噪声的多元随机动力学系统的隐藏物理。
translated by 谷歌翻译
深度学习的最新进展使神经网络(NNS)能够在许多应用中成功地取代传统的数控求解器,从而实现令人印象深刻的计算收益。一个这样的应用是时域模拟,这对于许多工程系统的设计,分析和操作是必不可少的。模拟基于牛顿的求解器的动态系统是一种计算繁忙的任务,因为它需要在每个时间步骤解决差分和代数方程的参数化系统的解决方案。已经显示了各种基于NN的方法,以成功地近似于数值溶剂计算的轨迹。但是,以前的一些工程已经使用NNS来模拟数值求解器本身。为了快速加速时域模拟速度的表达目的,本文提出并探索了两个互补的替代数字溶剂。首先,我们使用NN以模仿由逆雅加诺在单个牛顿步骤中提供的线性变换。使用此过程,我们评估并将基于物理的残余错误评估并将基于NN映射的确切,物理的残留错误项目进行评估并将其留下物理为“循环”中的“循环”。所得到的工具称为物理投影的神经 - 牛顿求解器(Prenn),能够在观察到的速度下实现极高的数值准确度,其比基于牛顿的求解器更快地高达31%。在第二种方法中,我们将牛顿求解器在隐式跳动-Kutta积分器的核心上模拟,作为一个契约地图,迭代地寻求时域轨迹的一个固定点。相关的复发性NN仿真工具被称为合同神经牛顿求解器(Conns),嵌入有训练约束(通过CVXPY层),该训练约束(通过CVXPY层),保证NN提供的映射满足BANACH定点定理。
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
在科学和工程应用中,通常需要反复解决类似的计算问题。在这种情况下,我们可以利用先前解决的问题实例中的数据来提高查找后续解决方案的效率。这提供了一个独特的机会,可以将机器学习(尤其是元学习)和科学计算相结合。迄今为止,文献中已经提出了各种此类域特异性方法,但是设计这些方法的通用方法仍然不足。在本文中,我们通过制定一个通用框架来描述这些问题,并提出一种基于梯度的算法来以统一的方式解决这些问题。作为这种方法的说明,我们研究了迭代求解器的适应性参数的自适应生成,以加速微分方程的溶液。我们通过理论分析和数值实验来证明我们方法的性能和多功能性,包括应用于不可压缩流量模拟的应用以及参数估计的逆问题。
translated by 谷歌翻译
我们为深度残留网络(RESNETS)提出了一种全球收敛的多级训练方法。设计的方法可以看作是递归多级信任区域(RMTR)方法的新型变体,该方法通过在训练过程中自适应调节迷你批量,在混合(随机确定性)设置中运行。多级层次结构和传输运算符是通过利用动力学系统的观点来构建的,该观点通过重新连接来解释远期传播作为对初始值问题的正向Euler离散化。与传统的培训方法相反,我们的新型RMTR方法还通过有限的内存SR1方法结合了有关多级层次结构各个级别的曲率信息。使用分类和回归领域的示例,对我们的多级训练方法的总体性能和收敛属性进行了数值研究。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
神经普通微分方程模型的动态系统,\ textit {ode}由神经网络学习。但是,ODE从根本上是不足以建模具有长期依赖性或不连续性的系统,这些系统在工程和生物系统中很常见。已经提出了更广泛的微分方程(DE)类作为补救措施,包括延迟微分方程和整数差异方程。此外,当通过分段强迫函数对硬质量和odes进行建模时,神经颂歌会遭受数值的不稳定性。在这项工作中,我们提出了\ textit {neural laplace},这是一个学习不同类别的统一框架,包括上述所有类别。我们没有在时间域中对动态进行建模,而是在拉普拉斯域中对其进行建模,在拉普拉斯域中,可以将历史依赖性和时间的不连续性表示为复杂指数的求和。为了提高学习效率,我们使用Riemann Sphere的几何立体图来诱导Laplace域中的平滑度。在实验中,神经拉普拉斯在建模和推断DES类别的轨迹方面表现出卓越的性能,包括具有复杂历史依赖性和突然变化的DES类别。
translated by 谷歌翻译
基于合奏的大规模模拟动态系统对于广泛的科学和工程问题至关重要。模拟中使用的常规数值求解器受到时间整合的步长显着限制,这会阻碍效率和可行性,尤其是在需要高精度的情况下。为了克服这一限制,我们提出了一种数据驱动的校正方法,该方法允许使用大型步骤,同时补偿了积分误差以提高精度。该校正器以矢量值函数的形式表示,并通过神经网络建模以回归相空间中的误差。因此,我们将校正神经矢量(Neurvec)命名。我们表明,Neurvec可以达到与传统求解器具有更大步骤尺寸的传统求解器相同的准确性。我们从经验上证明,Neurvec可以显着加速各种数值求解器,并克服这些求解器的稳定性限制。我们关于基准问题的结果,从高维问题到混乱系统,表明Neurvec能够捕获主要的误差项并保持整体预测的统计数据。
translated by 谷歌翻译
这项研究提出了用于完善神经网络参数或进入连续时间动态系统的控制功能的增量校正方法,以提高解决方案精度,以满足对性能输出变量放置的临时点约束。所提出的方法是将其参数基线围绕基线值的动力学线性化,然后求解将扰动轨迹传输到特定时间点(即临时点)处所需的纠正输入。根据要调整的决策变量的类型,参数校正和控制功能校正方法将开发出来。这些增量校正方法可以用作补偿实时应用中预训练的神经网络的预测错误的手段,在实时应用中,必须在规定的时间点上高精度预测动态系统的准确性。在这方面,在线更新方法可用于增强有限摩托控制的整体靶向准确性,但使用神经政策受到点约束。数值示例证明了拟议方法在火星上的动力下降问题中的应用中的有效性。
translated by 谷歌翻译