尽管他们成功了,但已显示深网非常容易受到扰动,通常会导致准确性大幅下降。在本文中,我们通过研究内部子网(子网)的性能来研究模型对扰动输入的鲁棒性。有趣的是,我们观察到大多数子网对扰动表现出特别差的鲁棒性。更重要的是,这些弱子网与整体缺乏鲁棒性有关。解决这一现象,我们提出了一种新的培训程序,该程序可以识别和增强弱子网(EWS)以提高鲁棒性。具体而言,我们开发了一种搜索算法,以找到特别弱的子网,并通过从完整网络中的知识蒸馏来明确加强它们。我们表明,EWS极大地提高了针对损坏的图像的鲁棒性以及清洁数据的准确性。与流行的数据增强方法互补,EWS与这些方法结合使用时会始终提高鲁棒性。为了强调我们方法的灵活性,我们还将EWS与流行的对抗训练方法相结合,从而改善了对抗性的鲁棒性。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
对抗性训练遭受了稳健的过度装备,这是一种现象,在训练期间鲁棒测试精度开始减少。在本文中,我们专注于通过使用常见的数据增强方案来减少强大的过度装备。我们证明,与先前的发现相反,当与模型重量平均结合时,数据增强可以显着提高鲁棒精度。此外,我们比较各种增强技术,并观察到空间组合技术适用于对抗性培训。最后,我们评估了我们在Cifar-10上的方法,而不是$ \ ell_ indty $和$ \ ell_2 $ norm-indeded扰动分别为尺寸$ \ epsilon = 8/255 $和$ \ epsilon = 128/255 $。与以前的最先进的方法相比,我们表现出+ 2.93%的绝对改善+ 2.93%,+ 2.16%。特别是,反对$ \ ell_ infty $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $,我们的模型达到60.07%的强劲准确性而不使用任何外部数据。我们还通过这种方法实现了显着的性能提升,同时使用其他架构和数据集如CiFar-100,SVHN和TinyimageNet。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AUGMIX, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AUGMIX significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
translated by 谷歌翻译
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [41] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%) and Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [24] which is trained with 3.5B Instagram images (∼3000× more than ImageNet) and ∼9.4× more parameters. Models are available at https://github.com/tensorflow/tpu/tree/ master/models/official/efficientnet.
translated by 谷歌翻译
数据增强是一种提高深神经网络(DNN)的鲁棒性的简单而有效的方法。多样性和硬度是数据增强的两个互补维度,以实现稳健性。例如,Augmix探讨了各种增强套的随机组成,以增强更广泛的覆盖,而对抗性培训产生过态度硬质样品以发现弱点。通过此激励,我们提出了一个数据增强框架,被称为奥古曼克,统一多样性和硬度的两个方面。 Augmax首先将多个增强运算符进行随机样本,然后学习所选操作员的对抗性混合物。作为更强大的数据增强形式,奥格梅纳队导致了一个明显的增强输入分布,使模型培训更具挑战性。为了解决这个问题,我们进一步设计了一个解散的归一化模块,称为Dubin(双批次和实例规范化),其解除了奥古曼克斯出现的实例 - 明智的特征异质性。实验表明,Augmax-Dubin将显着改善分配的鲁棒性,优于现有技术,在CiFar10-C,CiFar100-C,微小Imagenet-C和Imagenet-C上以3.03%,3.49%,1.82%和0.71%。可提供代码和预磨料模型:https://github.com/vita-group/augmax。
translated by 谷歌翻译
Deep neural networks achieve high prediction accuracy when the train and test distributions coincide. In practice though, various types of corruptions occur which deviate from this setup and cause severe performance degradations. Few methods have been proposed to address generalization in the presence of unforeseen domain shifts. In particular, digital noise corruptions arise commonly in practice during the image acquisition stage and present a significant challenge for current robustness approaches. In this paper, we propose a diverse Gaussian noise consistency regularization method for improving robustness of image classifiers under a variety of noise corruptions while still maintaining high clean accuracy. We derive bounds to motivate and understand the behavior of our Gaussian noise consistency regularization using a local loss landscape analysis. We show that this simple approach improves robustness against various unforeseen noise corruptions by 4.2-18.4% over adversarial training and other strong diverse data augmentation baselines across several benchmarks. Furthermore, when combined with state-of-the-art diverse data augmentation techniques, experiments against state-of-the-art show our method further improves robustness accuracy by 3.7% and uncertainty calibration by 5.5% for all common corruptions on several image classification benchmarks.
translated by 谷歌翻译
经过认证的稳健性保证衡量模型对测试时间攻击的稳健性,并且可以评估模型对现实世界中部署的准备情况。在这项工作中,我们批判性地研究了对基于随机平滑的认证方法的对抗鲁棒性如何在遇到配送外(OOD)数据的最先进的鲁棒模型时改变。我们的分析显示了这些模型的先前未知的漏洞,以低频OOD数据,例如与天气相关的损坏,使这些模型不适合在野外部署。为了缓解这个问题,我们提出了一种新的数据增强方案,Fourimix,产生增强以改善训练数据的光谱覆盖范围。此外,我们提出了一种新规范器,鼓励增强数据的噪声扰动的一致预测,以提高平滑模型的质量。我们发现Fouriermix增强有助于消除可认真强大的模型的频谱偏差,使其能够在一系列ood基准上实现明显更好的稳健性保证。我们的评估还在突出模型的光谱偏差时揭示了当前的OOD基准。为此,我们提出了一个全面的基准套件,其中包含来自光谱域中不同区域的损坏。对拟议套件上流行的增强方法培训的模型的评估突出了它们的光谱偏差,并建立了富硫克斯训练型模型在实现整个频谱上变化下的更好认证的鲁棒性担保的优势。
translated by 谷歌翻译
积极的数据增强是视觉变压器(VIT)的强大泛化能力的关键组成部分。一种这样的数据增强技术是对抗性培训;然而,许多先前的作品表明,这通常会导致清洁的准确性差。在这项工作中,我们展示了金字塔对抗训练,这是一种简单有效的技术来提高韦维尔的整体性能。我们将其与“匹配”辍学和随机深度正则化配对,这采用了干净和对抗样品的相同辍学和随机深度配置。类似于Advprop的CNNS的改进(不直接适用于VIT),我们的金字塔对抗性训练会破坏分销准确性和vit和相关架构的分配鲁棒性之间的权衡。当Imagenet-1K数据训练时,它导致ImageNet清洁准确性的182美元的vit-B模型的精确度,同时由7美元的稳健性指标同时提高性能,从$ 1.76 \%$至11.45 \%$。我们为Imagenet-C(41.4 MCE),Imagenet-R($ 53.92 \%$),以及Imagenet-Sketch(41.04美元\%$)的新的最先进,只使用vit-b / 16骨干和我们的金字塔对抗训练。我们的代码将在接受时公开提供。
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
我们提出了自适应培训 - 一种统一的培训算法,通过模型预测动态校准并增强训练过程,而不会产生额外的计算成本 - 以推进深度神经网络的监督和自我监督的学习。我们分析了培训数据的深网络培训动态,例如随机噪声和对抗例。我们的分析表明,模型预测能够在数据中放大有用的基础信息,即使在没有任何标签信息的情况下,这种现象也会发生,突出显示模型预测可能会产生培训过程:自适应培训改善了深网络的概括在噪音下,增强自我监督的代表学习。分析还阐明了解深度学习,例如,在经验风险最小化和最新的自我监督学习算法的折叠问题中对最近发现的双重现象的潜在解释。在CIFAR,STL和Imagenet数据集上的实验验证了我们在三种应用中的方法的有效性:用标签噪声,选择性分类和线性评估进行分类。为了促进未来的研究,该代码已在HTTPS://github.com/layneh/Self-Aveptive-训练中公开提供。
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
神经网络稳健性近年来已成为机器学习中的核心主题。大多数培训算法,提高模型对抗对抗和共同腐败的鲁棒性也引入了大的计算开销,需要向前和后向往的数量和后向往的多达十倍以便收敛。为了打击这种低效率,我们提出了Bullettrain $ - $界限示例挖掘技术,以大大降低强大培训的计算成本。我们的主要观察是,只有一小部分的例子是有利于改善稳健性的有益。Bullettrain动态预测了这些重要的例子,并优化了强大的培训算法,专注于重要例子。我们将技术应用于几个现有的强大培训算法,在CiFar-10和Cifar-10-C和CiFar上的Augmix上获得了2.1美元\ Times $ 10.7 $ \ times $ Scase-Up。100-C没有任何清洁和稳健的准确性。
translated by 谷歌翻译
网络体系结构搜索(NAS),尤其是可区分的体系结构搜索(DARTS)方法,已经显示出在特定感兴趣的特定数据集中学习出色的模型体系结构的强大力量。与使用固定的数据集相反,在这项工作中,我们关注NAS的不同但重要的方案:如何完善部署的网络模型体系结构,以增强其鲁棒性,并通过一些收集和错误分类的示例的指导来增强其鲁棒性,这些示例被某些降低了现实世界中的未知损坏具有特定的模式(例如噪声,模糊等)。为此,我们首先进行了一项实证研究,以验证模型体系结构绝对与腐败模式有关。令人惊讶的是,通过仅添加一些损坏和错误分类的示例(例如,$ 10^3 $示例)到清洁培训数据集(例如$ 5.0 \ times 10^4 $示例)中,我们可以完善模型体系结构并显着增强鲁棒性。为了使其更加实用,应仔细研究关键问题,即如何为有效的NAS指导选择适当的失败示例。然后,我们提出了一个新颖的核心失效指导飞镖,该飞镖嵌入了K-Center-Greedy算法的飞镖,以选择合适的损坏故障示例以完善模型体系结构。我们使用我们的方法在清洁和15个腐败上使用飞镖精制的DNN,并在四个特定的现实世界腐败的指导下进行了指导。与最先进的NAS以及基于数据启发的增强方法相比,我们的最终方法可以在损坏的数据集和原始清洁数据集上获得更高的精度。在某些腐败模式上,我们可以达到超过45%的绝对准确性提高。
translated by 谷歌翻译
尽管对图像分类任务的表现令人印象深刻,但深网络仍然难以概括其数据的许多常见损坏。为解决此漏洞,事先作品主要专注于提高其培训管道的复杂性,以多样性的名义结合多种方法。然而,在这项工作中,我们逐步回来并遵循原则的方法来实现共同腐败的稳健性。我们提出了一个普遍的数据增强方案,包括最大熵图像变换的简单系列。我们展示了Prime优于现有技术的腐败鲁棒性,而其简单和即插即用性质使其能够与其他方法结合以进一步提升其稳健性。此外,我们分析了对综合腐败图像混合策略的重要性,并揭示了在共同腐败背景下产生的鲁棒性准确性权衡的重要性。最后,我们表明我们的方法的计算效率允许它在线和离线数据增强方案轻松使用。
translated by 谷歌翻译
对抗性培训是生产模型的行业标准,对小对抗扰动具有鲁棒性。然而,机器学习从业者需要对自然发生的其他类型的变化具有强大的模型,例如输入图像的样式或照明的变化。输入分布的这种变化已经有效地建模为深度图像特征的平均值和方差的变化。我们通过直接扰动特征统计而不是图像像素来调整对抗性训练,以生产对各种看不见分布偏移的稳健的模型。通过可视化对抗特征,我们探讨了这些扰动和分布转变之间的关系。我们提出的方法,对抗批量归一化(ADVBN)是一种网络层,在训练期间产生最坏情况的扰动。通过微调对抗性特征分布的神经网络,我们观察到对各种看不见的分布转移的网络的改进的鲁棒性,包括风格变化和图像损坏。此外,我们表明,我们提出的对抗特征扰动可以与现有的图像空间数据增强方法互补,从而提高性能。源代码和预先训练的型号在\ url {https://github.com/azshue/advbn}释放。
translated by 谷歌翻译
深度神经网络具有强大的功能,但它们也有缺点,例如它们对对抗性例子,噪音,模糊,遮挡等的敏感性。先前提出了许多以前的工作来提高特定的鲁棒性。但是,我们发现,在神经网络模型的额外鲁棒性或概括能力的牺牲下,通常会提高特定的鲁棒性。特别是,在改善对抗性鲁棒性时,对抗性训练方法在不受干扰的数据上严重损害了对不受干扰数据的概括性能。在本文中,我们提出了一种称为AugRmixat的新数据处理和培训方法,该方法可以同时提高神经网络模型的概括能力和多重鲁棒性。最后,我们验证了AUGRMIXAT对CIFAR-10/100和Tiny-Imagenet数据集的有效性。实验表明,Augrmixat可以改善模型的概括性能,同时增强白色框的鲁棒性,黑盒鲁棒性,常见的损坏鲁棒性和部分遮挡鲁棒性。
translated by 谷歌翻译
Self-supervision provides effective representations for downstream tasks without requiring labels. However, existing approaches lag behind fully supervised training and are often not thought beneficial beyond obviating or reducing the need for annotations. We find that self-supervision can benefit robustness in a variety of ways, including robustness to adversarial examples, label corruption, and common input corruptions. Additionally, self-supervision greatly benefits out-of-distribution detection on difficult, near-distribution outliers, so much so that it exceeds the performance of fully supervised methods. These results demonstrate the promise of self-supervision for improving robustness and uncertainty estimation and establish these tasks as new axes of evaluation for future self-supervised learning research.
translated by 谷歌翻译