对抗性培训是生产模型的行业标准,对小对抗扰动具有鲁棒性。然而,机器学习从业者需要对自然发生的其他类型的变化具有强大的模型,例如输入图像的样式或照明的变化。输入分布的这种变化已经有效地建模为深度图像特征的平均值和方差的变化。我们通过直接扰动特征统计而不是图像像素来调整对抗性训练,以生产对各种看不见分布偏移的稳健的模型。通过可视化对抗特征,我们探讨了这些扰动和分布转变之间的关系。我们提出的方法,对抗批量归一化(ADVBN)是一种网络层,在训练期间产生最坏情况的扰动。通过微调对抗性特征分布的神经网络,我们观察到对各种看不见的分布转移的网络的改进的鲁棒性,包括风格变化和图像损坏。此外,我们表明,我们提出的对抗特征扰动可以与现有的图像空间数据增强方法互补,从而提高性能。源代码和预先训练的型号在\ url {https://github.com/azshue/advbn}释放。
translated by 谷歌翻译
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [41] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%) and Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [24] which is trained with 3.5B Instagram images (∼3000× more than ImageNet) and ∼9.4× more parameters. Models are available at https://github.com/tensorflow/tpu/tree/ master/models/official/efficientnet.
translated by 谷歌翻译
数据增强是一种提高深神经网络(DNN)的鲁棒性的简单而有效的方法。多样性和硬度是数据增强的两个互补维度,以实现稳健性。例如,Augmix探讨了各种增强套的随机组成,以增强更广泛的覆盖,而对抗性培训产生过态度硬质样品以发现弱点。通过此激励,我们提出了一个数据增强框架,被称为奥古曼克,统一多样性和硬度的两个方面。 Augmax首先将多个增强运算符进行随机样本,然后学习所选操作员的对抗性混合物。作为更强大的数据增强形式,奥格梅纳队导致了一个明显的增强输入分布,使模型培训更具挑战性。为了解决这个问题,我们进一步设计了一个解散的归一化模块,称为Dubin(双批次和实例规范化),其解除了奥古曼克斯出现的实例 - 明智的特征异质性。实验表明,Augmax-Dubin将显着改善分配的鲁棒性,优于现有技术,在CiFar10-C,CiFar100-C,微小Imagenet-C和Imagenet-C上以3.03%,3.49%,1.82%和0.71%。可提供代码和预磨料模型:https://github.com/vita-group/augmax。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
对抗性训练(AT)通常被认为是防御对抗性例子的最有效的方法之一,可能会在很大程度上损害标准绩效,因此对工业规模的生产和应用的有用性有限。令人惊讶的是,这种现象在自然语言处理(NLP)任务中完全相反,在该任务中甚至可以从中受益。我们注意到NLP任务中AT的优点可能来自离散和符号输入空间。为了借用NLP风格的优势,我们提出了离散的对抗训练(DAT)。 DAT利用VQGAN改革图像数据以离散类似文本的输入,即视觉单词。然后,它可以最大程度地减少这种离散图像的最大风险,并具有符号对抗扰动。我们从分布的角度进一步提供了解释,以证明DAT的有效性。作为增强视觉表示的插件技术,DAT可以在多个任务上取得重大改进,包括图像分类,对象检测和自我监督学习。尤其是,该模型通过胶带自动编码(MAE)预先训练并由我们的DAT进行微调,而没有额外的数据可以在Imagenet-C上获得31.40 MCE,并且在Stylized-Imagenet上进行了32.77%的TOP-1准确性,建立了新的状态 - 艺术。该代码将在https://github.com/alibaba/easyrobust上找到。
translated by 谷歌翻译
积极的数据增强是视觉变压器(VIT)的强大泛化能力的关键组成部分。一种这样的数据增强技术是对抗性培训;然而,许多先前的作品表明,这通常会导致清洁的准确性差。在这项工作中,我们展示了金字塔对抗训练,这是一种简单有效的技术来提高韦维尔的整体性能。我们将其与“匹配”辍学和随机深度正则化配对,这采用了干净和对抗样品的相同辍学和随机深度配置。类似于Advprop的CNNS的改进(不直接适用于VIT),我们的金字塔对抗性训练会破坏分销准确性和vit和相关架构的分配鲁棒性之间的权衡。当Imagenet-1K数据训练时,它导致ImageNet清洁准确性的182美元的vit-B模型的精确度,同时由7美元的稳健性指标同时提高性能,从$ 1.76 \%$至11.45 \%$。我们为Imagenet-C(41.4 MCE),Imagenet-R($ 53.92 \%$),以及Imagenet-Sketch(41.04美元\%$)的新的最先进,只使用vit-b / 16骨干和我们的金字塔对抗训练。我们的代码将在接受时公开提供。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
为了在单一源领域的概括中取得成功,最大化合成域的多样性已成为最有效的策略之一。最近的许多成功都来自预先指定模型在培训期间暴露于多样性类型的方法,因此它最终可以很好地概括为新领域。但是,基于na \“基于多样性的增强也不能因为它们无法对大型域移动建模,或者因为预先指定的变换的跨度不能涵盖域概括中通常发生的转移类型。解决这个问题,我们提出了一个新颖的框架,该框架使用神经网络使用对抗学习的转换(ALT)来建模可欺骗分类器的合理但硬的图像转换。该网络是为每个批次的随机初始初始初始初始初始初始化的,并培训了固定数量的步骤。为了最大化分类错误。此外,我们在分类器对干净和转化的图像的预测之间实现一致性。通过广泛的经验分析,我们发现这种对抗性转换的新形式同时实现了多样性和硬度的目标,并超越了所有现有技术,以实现竞争性的所有技术单源域概括的基准。我们还显示了T HAT ALT可以自然地与现有的多样性模块合作,从而产生高度独特的源域,导致最先进的性能。
translated by 谷歌翻译
对抗性训练(AT)捍卫深层神经网络免受对抗攻击。限制其实际应用的一个挑战是对干净样品的性能降解。以前的作品确定的主要瓶颈是广泛使用的批准化(BN),它努力为AT中的清洁和对抗训练样本的不同统计数据建模。尽管主要的方法是扩展BN以捕获这种分布的混合物,但我们建议通过去除AT中的所有BN层来完全消除这种瓶颈。我们的无标准器稳健训练(NOFROST)方法将无标准器网络的最新进展扩展到了AT,因为它在处理混合分配挑战方面未开发优势。我们表明,Nofrost在干净的样品准确性上只有轻微的牺牲才能实现对抗性的鲁棒性。在具有RESNET50的Imagenet上,Nofrost可实现$ 74.06 \%$清洁精度,从标准培训中降低了$ 2.00 \%$。相比之下,基于BN的基于BN的$ 59.28 \%$清洁准确性,从标准培训中获得了$ 16.78 \%$的大幅下降。此外,Nofrost在PGD Attack上达到了23.56美元的$ 23.56 \%$的对抗性,这提高了基于BN AT的13.57美元\%$ $鲁棒性。我们观察到更好的模型平滑度和来自Nofrost的较大决策边缘,这使得模型对输入扰动的敏感程度降低,从而更加健壮。此外,当将更多的数据增强纳入NOFROST时,它可以针对多个分配变化实现全面的鲁棒性。代码和预训练的模型在https://github.com/amazon-research/normalizer-free-robust-training上公开。
translated by 谷歌翻译
We are concerned with a worst-case scenario in model generalization, in the sense that a model aims to perform well on many unseen domains while there is only one single domain available for training. We propose a new method named adversarial domain augmentation to solve this Outof-Distribution (OOD) generalization problem. The key idea is to leverage adversarial training to create "fictitious" yet "challenging" populations, from which a model can learn to generalize with theoretical guarantees. To facilitate fast and desirable domain augmentation, we cast the model training in a meta-learning scheme and use a Wasserstein Auto-Encoder (WAE) to relax the widely used worst-case constraint. Detailed theoretical analysis is provided to testify our formulation, while extensive experiments on multiple benchmark datasets indicate its superior performance in tackling single domain generalization.
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译
深度卷积神经网络(CNN)很容易被输入图像的细微,不可察觉的变化所欺骗。为了解决此漏洞,对抗训练会创建扰动模式,并将其包括在培训设置中以鲁棒性化模型。与仅使用阶级有限信息的现有对抗训练方法(例如,使用交叉渗透损失)相反,我们建议利用功能空间中的其他信息来促进更强的对手,这些信息又用于学习强大的模型。具体来说,我们将使用另一类的目标样本的样式和内容信息以及其班级边界信息来创建对抗性扰动。我们以深入监督的方式应用了我们提出的多任务目标,从而提取了多尺度特征知识,以创建最大程度地分开对手。随后,我们提出了一种最大边缘对抗训练方法,该方法可最大程度地减少源图像与其对手之间的距离,并最大程度地提高对手和目标图像之间的距离。与最先进的防御能力相比,我们的对抗训练方法表明了强大的鲁棒性,可以很好地推广到自然发生的损坏和数据分配变化,并保留了清洁示例的模型准确性。
translated by 谷歌翻译
In this paper we establish rigorous benchmarks for image classifier robustness. Our first benchmark, IMAGENET-C, standardizes and expands the corruption robustness topic, while showing which classifiers are preferable in safety-critical applications. Then we propose a new dataset called IMAGENET-P which enables researchers to benchmark a classifier's robustness to common perturbations. Unlike recent robustness research, this benchmark evaluates performance on common corruptions and perturbations not worst-case adversarial perturbations. We find that there are negligible changes in relative corruption robustness from AlexNet classifiers to ResNet classifiers. Afterward we discover ways to enhance corruption and perturbation robustness. We even find that a bypassed adversarial defense provides substantial common perturbation robustness. Together our benchmarks may aid future work toward networks that robustly generalize.
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AUGMIX, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AUGMIX significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
translated by 谷歌翻译
最近提出的对抗自我监督的学习方法通常需要大批和长期训练时期提取强大的功能,在实际应用中是不友好的。在本文中,我们提出了一种新的对抗动力对比学习方法,它利用两个存储体来跟踪不同迷你批次的不变特征。这些存储体可以有效地结合到每次迭代中,并帮助网络学习具有较小批次的更强大的特征表示,并且较少的时期。此外,在对分类任务进行微调后,所提出的方法可以满足或超过现实世界数据集上一些最先进的监督基线的性能。我们的代码可用于\ url {https:/github.com/mtandhj/amoc}。
translated by 谷歌翻译
不变性于广泛的图像损坏,例如翘曲,噪声或颜色移位,是在计算机视觉中建立强大模型的一个重要方面。最近,已经提出了几种新的数据增强,从而显着提高了Imagenet-C的性能,这是这种腐败的基准。但是,对数据增强和测试时间损坏之间的关系仍然缺乏基本的理解。为此,我们开发了图像变换的一个特征空间,然后在增强和损坏之间使用该空间中的新措施,称为最小示例距离,以演示相似性和性能之间的强相关性。然后,当测试时间损坏被对来自Imagenet-C中的测试时间损坏被采样时,我们调查最近的数据增强并观察腐败鲁棒性的重大退化。我们的结果表明,通过对感知同类增强的培训来提高测试错误,数据增强可能不会超出现有的基准。我们希望我们的结果和工具将允许更强大的进展,以提高对图像损坏的稳健性。我们在https://github.com/facebookresearch/augmentation - 窗子提供代码。
translated by 谷歌翻译
Deep neural networks achieve high prediction accuracy when the train and test distributions coincide. In practice though, various types of corruptions occur which deviate from this setup and cause severe performance degradations. Few methods have been proposed to address generalization in the presence of unforeseen domain shifts. In particular, digital noise corruptions arise commonly in practice during the image acquisition stage and present a significant challenge for current robustness approaches. In this paper, we propose a diverse Gaussian noise consistency regularization method for improving robustness of image classifiers under a variety of noise corruptions while still maintaining high clean accuracy. We derive bounds to motivate and understand the behavior of our Gaussian noise consistency regularization using a local loss landscape analysis. We show that this simple approach improves robustness against various unforeseen noise corruptions by 4.2-18.4% over adversarial training and other strong diverse data augmentation baselines across several benchmarks. Furthermore, when combined with state-of-the-art diverse data augmentation techniques, experiments against state-of-the-art show our method further improves robustness accuracy by 3.7% and uncertainty calibration by 5.5% for all common corruptions on several image classification benchmarks.
translated by 谷歌翻译
We study how robust current ImageNet models are to distribution shifts arising from natural variations in datasets. Most research on robustness focuses on synthetic image perturbations (noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness on synthetic distribution shift relates to distribution shift arising in real data. Informed by an evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most current techniques provide no robustness to the natural distribution shifts in our testbed. The main exception is training on larger and more diverse datasets, which in multiple cases increases robustness, but is still far from closing the performance gaps. Our results indicate that distribution shifts arising in real data are currently an open research problem. We provide our testbed and data as a resource for future work at https://modestyachts.github.io/imagenet-testbed/.
translated by 谷歌翻译