使用重量衰减来惩罚神经网络中的重量规范,这是一种标准的培训实践,可以使网络的复杂性正常。在本文中,我们表明,包括重量衰减在内的一个正规化家族无效地惩罚具有正均匀激活功能的网络的固有权重规范,例如线性,relu和max-pool-pool函数。由于同质性,网络指定的功能是在层之间的重量尺度转移的不变性。无效的正规化器对这种转移敏感,因此使模型容量不正常,导致过度拟合。为了解决这一缺点,我们提出了一个改进的正规器,该正常化程序是体重尺度转移不变的,因此有效地约束了神经网络的内在规范。派生的正常化程序是网络输入梯度的上限,因此最大程度地降低了改进的正规器也使对抗性鲁棒性受益。还考虑了剩余连接,我们表明我们的正规器还形成了这种残留网络的输入梯度的上限。我们证明了我们提出的正常化程序在各种数据集和神经网络体系结构上的功效,以改善概括和对抗性鲁棒性。
translated by 谷歌翻译
重量衰减通常用于确保具有批归归量的深神经网络的训练实践中的良好概括(BN-DNNS),在该训练中,由于归一化,某些卷积层对于重量重新恢复是不变的。在本文中,我们证明了重量衰减的实际用法仍然存在一些未解决的问题,尽管现有的理论工作在解释BN-DNNS中体重衰减的影响方面。一方面,当非自适应学习率例如使用动量的SGD,即使在初始训练阶段,有效学习率也会继续增加,从而导致许多神经体系结构的过度拟合效果。另一方面,在SGDM和自适应学习率优化器中,例如亚当,体重衰减对概括的影响对超参数非常敏感。因此,找到最佳的重量衰减参数需要广泛的参数搜索。为了解决这些弱点,我们建议使用简单而有效的重量重新缩放(WRS)方案来规范重量规范,以替代体重衰减。 WRS通过将重量标准明确地重新定为单位规范来控制重量规范,从而防止梯度增加,但也确保了足够大的有效学习率以提高概括。在各种计算机视觉应用程序中,包括图像分类,对象检测,语义细分和人群计数,我们与重量衰减,隐含重量重新缩放(重量标准化)和梯度投影(ADAMP)相比,显示了WR的有效性和鲁棒性。
translated by 谷歌翻译
深度神经网络的高度非线性性质使它们容易受到对抗例子的影响,并且具有不稳定的梯度,从而阻碍了可解释性。但是,解决这些问题的现有方法,例如对抗性训练,是昂贵的,并且通常会牺牲预测的准确性。在这项工作中,我们考虑曲率,这是编码非线性程度的数学数量。使用此功能,我们展示了低曲率的神经网络(LCNN),这些神经网络(LCNN)的曲率比标准模型大大低,同时表现出相似的预测性能,从而导致稳健性和稳定梯度,并且只有略有增加的训练时间。为了实现这一目标,我们最大程度地减少了与数据依赖性的上限在神经网络的曲率上,该曲率分解了其组成层的曲率和斜率方面的总体曲率。为了有效地最大程度地减少这种结合,我们介绍了两个新型的建筑组件:首先,一种称为中心软pplus的非线性性,是SoftPlus非线性的稳定变体,其次是Lipschitz构成的批处理标准化层。我们的实验表明,与标准的高曲率对应物相比,LCNN具有较低的曲率,更稳定的梯度和增加现成的对抗性鲁棒性,而不会影响预测性能。我们的方法易于使用,可以很容易地将其纳入现有的神经网络模型中。
translated by 谷歌翻译
经认证的稳健性是安全关键应用中的深度神经网络的理想性质,流行的训练算法可以通过计算其Lipschitz常数的全球界限来认证神经网络的鲁棒性。然而,这种界限往往松动:它倾向于过度规范神经网络并降低其自然精度。绑定的Lipschitz绑定可以在自然和认证的准确性之间提供更好的权衡,但通常很难根据网络的非凸起计算。在这项工作中,我们通过考虑激活函数(例如Relu)和权重矩阵之间的相互作用,提出了一种有效和培训的\ emph {本地} Lipschitz上限。具体地,当计算权重矩阵的诱发标准时,我们消除了相应的行和列,其中保证激活函数在每个给定数据点的邻域中是常数,它提供比全局Lipschitz常数的可怕更严格的绑定神经网络。我们的方法可用作插入式模块,以拧紧在许多可认证的训练算法中绑定的Lipschitz。此外,我们建议夹住激活功能(例如,Relu和Maxmin),具有可读的上限阈值和稀疏性损失,以帮助网络实现甚至更严格的本地嘴唇尖端。在实验上,我们表明我们的方法始终如一地优于Mnist,CiFar-10和Tinyimagenet数据集的清洁和认证准确性,具有各种网络架构的清洁和认证的准确性。
translated by 谷歌翻译
We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to non-square matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the state-of-the-art in terms of accuracy on CIFAR-10/100 and Street View House Numbers (SVHN), while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.
translated by 谷歌翻译
已知深神经网络(DNN)容易受到对抗性攻击的影响。已经提出了一系列防御方法来培训普遍稳健的DNN,其中对抗性培训已经证明了有希望的结果。然而,尽管对对抗性培训开发的初步理解,但从架构角度来看,它仍然不明确,从架构角度来看,什么配置可以导致更强大的DNN。在本文中,我们通过全面调查网络宽度和深度对前对方培训的DNN的鲁棒性的全面调查来解决这一差距。具体地,我们进行以下关键观察:1)更多参数(更高的模型容量)不一定有助于对抗冒险; 2)网络的最后阶段(最后一组块)降低能力实际上可以改善对抗性的鲁棒性; 3)在相同的参数预算下,存在对抗性鲁棒性的最佳架构配置。我们还提供了一个理论分析,解释了为什么这种网络配置可以帮助鲁棒性。这些架构见解可以帮助设计对抗的强制性DNN。代码可用于\ url {https://github.com/hanxunh/robustwrn}。
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
在梯度下降中注入噪声具有几个理想的特征。在本文中,我们在计算梯度步骤之前探索噪声注入,该梯度步骤已知具有平滑和正规化的特性。我们表明,小扰动会导致基于L1-norm,L1-Norms或核规范的简单有限维模型的显式正则化。当应用于具有较大宽度的过多散热性神经网络时,我们表明,由于过多参数化导致的方差爆炸,相同的扰动无效。但是,我们还表明,独立的层扰动允许避免爆炸差异项,然后可以获得显式正则化器。我们从经验上表明,与香草(随机)梯度下降训练相比,小的扰动可以提高泛化性能,对训练程序进行了较小的调整。
translated by 谷歌翻译
研究神经网络中重量扰动的敏感性及其对模型性能的影响,包括泛化和鲁棒性,是一种积极的研究主题,因为它对模型压缩,泛化差距评估和对抗攻击等诸如模型压缩,泛化差距评估和对抗性攻击的广泛机器学习任务。在本文中,我们在重量扰动下的鲁棒性方面提供了前馈神经网络的第一积分研究和分析及其在体重扰动下的泛化行为。我们进一步设计了一种新的理论驱动损失功能,用于培训互动和强大的神经网络免受重量扰动。进行实证实验以验证我们的理论分析。我们的结果提供了基本洞察,以表征神经网络免受重量扰动的泛化和鲁棒性。
translated by 谷歌翻译
本文介绍了独立的神经颂歌(Snode),这是一种连续深入的神经模型,能够描述完整的深神经网络。这使用了一种新型的非线性结合梯度(NCG)下降优化方案,用于训练,在该方案中可以合并Sobolev梯度以提高模型权重的平滑度。我们还提出了神经敏感性问题的一般表述,并显示了它在NCG训练中的使用方式。灵敏度分析提供了整个网络中不确定性传播的可靠度量,可用于研究模型鲁棒性并产生对抗性攻击。我们的评估表明,与Resnet模型相比,我们的新型配方会提高鲁棒性和性能,并且为设计和开发机器学习的新机会提供了改善的解释性。
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial attacks. Ideally, a robust model shall perform well on both the perturbed training data and the unseen perturbed test data. It is found empirically that fitting perturbed training data is not hard, but generalizing to perturbed test data is quite difficult. To better understand adversarial generalization, it is of great interest to study the adversarial Rademacher complexity (ARC) of deep neural networks. However, how to bound ARC in multi-layers cases is largely unclear due to the difficulty of analyzing adversarial loss in the definition of ARC. There have been two types of attempts of ARC. One is to provide the upper bound of ARC in linear and one-hidden layer cases. However, these approaches seem hard to extend to multi-layer cases. Another is to modify the adversarial loss and provide upper bounds of Rademacher complexity on such surrogate loss in multi-layer cases. However, such variants of Rademacher complexity are not guaranteed to be bounds for meaningful robust generalization gaps (RGG). In this paper, we provide a solution to this unsolved problem. Specifically, we provide the first bound of adversarial Rademacher complexity of deep neural networks. Our approach is based on covering numbers. We provide a method to handle the robustify function classes of DNNs such that we can calculate the covering numbers. Finally, we provide experiments to study the empirical implication of our bounds and provide an analysis of poor adversarial generalization.
translated by 谷歌翻译
Neural network interpretation methods, particularly feature attribution methods, are known to be fragile with respect to adversarial input perturbations. To address this, several methods for enhancing the local smoothness of the gradient while training have been proposed for attaining \textit{robust} feature attributions. However, the lack of considering the normalization of the attributions, which is essential in their visualizations, has been an obstacle to understanding and improving the robustness of feature attribution methods. In this paper, we provide new insights by taking such normalization into account. First, we show that for every non-negative homogeneous neural network, a naive $\ell_2$-robust criterion for gradients is \textit{not} normalization invariant, which means that two functions with the same normalized gradient can have different values. Second, we formulate a normalization invariant cosine distance-based criterion and derive its upper bound, which gives insight for why simply minimizing the Hessian norm at the input, as has been done in previous work, is not sufficient for attaining robust feature attribution. Finally, we propose to combine both $\ell_2$ and cosine distance-based criteria as regularization terms to leverage the advantages of both in aligning the local gradient. As a result, we experimentally show that models trained with our method produce much more robust interpretations on CIFAR-10 and ImageNet-100 without significantly hurting the accuracy, compared to the recent baselines. To the best of our knowledge, this is the first work to verify the robustness of interpretation on a larger-scale dataset beyond CIFAR-10, thanks to the computational efficiency of our method.
translated by 谷歌翻译
最近,张等人。(2021)基于$ \ ell_ \ infty $ -distance函数开发出一种新的神经网络架构,自然拥有经过认证的$ \ ell_ \ infty $坚固的稳健性。尽管具有出色的理论特性,但到目前为止的模型只能实现与传统网络的可比性。在本文中,我们通过仔细分析培训流程,大大提高了$ \ ell_ \ infty $ -distance网的认证稳健性。特别是,我们展示了$ \ ell_p $ -rexation,这是克服模型的非平滑度的关键方法,导致早期训练阶段的意外的大型嘴唇浓度。这使得优化不足以使用铰链损耗并产生次优溶液。鉴于这些调查结果,我们提出了一种简单的方法来解决上述问题,设计一种新的客观函数,这些功能将缩放的跨熵损失结合在剪切铰链损失。实验表明,使用拟议的培训策略,$ \ ell_ \ infty $-distance网的认证准确性可以从Cifar-10($ \ epsilon = 8/255 $)的33.30%到40.06%的显着提高到40.06%,同时显着优于表现优势该地区的其他方法。我们的结果清楚地展示了$ \ ell_ \ infty $-distance净的有效性和潜力,以获得认证的稳健性。代码在https://github.com/zbh2047/l_inf-dist-net-v2上获得。
translated by 谷歌翻译
神经常规差分方程(ODES)最近在各种研究域中引起了不断的关注。有一些作品研究了神经杂物的优化问题和近似能力,但他们的鲁棒性尚不清楚。在这项工作中,我们通过探索神经杂物经验和理论上的神经杂物的鲁棒性质来填补这一重要差异。我们首先通过将它们暴露于具有各种类型的扰动并随后研究相应输出的变化来提出基于神经竞争的网络(odeNets)的鲁棒性的实证研究。与传统的卷积神经网络(CNNS)相反,我们发现odeenets对随机高斯扰动和对抗性攻击示例的更稳健。然后,我们通过利用连续时间颂的流动的某种理想性能来提供对这种现象的富有识别理解,即积分曲线是非交叉的。我们的工作表明,由于其内在的稳健性,它很有希望使用神经杂散作为构建强大的深网络模型的基本块。为了进一步增强香草神经杂物杂物的鲁棒性,我们提出了时间不变的稳定神经颂(Tisode),其通过时间不变性和施加稳态约束来规则地规则地规则地对扰动数据的流程。我们表明,Tisode方法优于香草神经杂物,也可以与其他最先进的架构方法一起制造更强大的深网络。 \ url {https://github.com/hanshuyan/tisode}
translated by 谷歌翻译
标准化技术已成为现代卷积神经网络(Convnets)中的基本组件。特别是,许多最近的作品表明,促进重量的正交性有助于培训深层模型并提高鲁棒性。对于Courmnets,大多数现有方法基于惩罚或归一化矩阵判断或施加卷积核的重量矩阵。这些方法经常摧毁或忽视核的良性卷积结构;因此,对于深扫描器来说,它们通常是昂贵或不切实际的。相比之下,我们介绍了一种简单富有高效的“卷积归一化”(ConvNORM)方法,可以充分利用傅立叶域中的卷积结构,并用作简单的即插即用模块,以方便地结合到任何围栏中。我们的方法是通过最近关于卷积稀疏编码的预处理方法的工作启发,可以有效地促进每个层的频道方向等距。此外,我们表明我们的判断可以降低重量矩阵的层状频谱标准,从而改善网络的嘴唇,导致培训更容易培训和改善深扫描器的鲁棒性。在噪声损坏和生成的对抗网络(GAN)下应用于分类,我们表明CONVNOMOL提高了常见扫描仪(如RENET和GAN性能)的稳健性。我们通过Cifar和Imagenet的数值实验验证了我们的研究结果。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
Shift Invariance是CNN的关键属性,可提高分类性能。然而,我们表明,与循环偏移的不变性也可能导致对对抗性攻击的更大敏感性。我们首先在使用换档不变线性分类器时表征类之间的余量。我们表明边际只能依赖于信号的DC分量。然后,使用关于无限宽网络的结果,我们显示在一些简单的情况下,完全连接和换档不变神经网络产生线性决策边界。使用这一点,我们证明了神经网络中的换档不变性为两个类的简单情况产生了对手示例,每个案例由灰色背景上的黑色或白点组成的单个图像。这不仅仅是一种好奇心;我们凭经验显示,使用真实的数据集和现实的架构,换档不变性降低了对抗性的鲁棒性。最后,我们描述了使用合成数据来探测这种连接源的初始实验。
translated by 谷歌翻译
Adversarial training is widely used to improve the robustness of deep neural networks to adversarial attack. However, adversarial training is prone to overfitting, and the cause is far from clear. This work sheds light on the mechanisms underlying overfitting through analyzing the loss landscape w.r.t. the input. We find that robust overfitting results from standard training, specifically the minimization of the clean loss, and can be mitigated by regularization of the loss gradients. Moreover, we find that robust overfitting turns severer during adversarial training partially because the gradient regularization effect of adversarial training becomes weaker due to the increase in the loss landscapes curvature. To improve robust generalization, we propose a new regularizer to smooth the loss landscape by penalizing the weighted logits variation along the adversarial direction. Our method significantly mitigates robust overfitting and achieves the highest robustness and efficiency compared to similar previous methods. Code is available at https://github.com/TreeLLi/Combating-RO-AdvLC.
translated by 谷歌翻译
对于深层网络而言,这是一个非常理想的属性,可与小型输入更改保持强大。实现此属性的一种流行方法是设计具有小Lipschitz常数的网络。在这项工作中,我们提出了一种用于构建具有许多理想属性的Lipschitz网络的新技术:它可以应用于任何线性网络层(完全连接或卷积),它在Lipschitz常数上提供了正式的保证,它是易于实施和运行效率,可以与任何培训目标和优化方法结合使用。实际上,我们的技术是文献中第一个同时实现所有这些属性的技术。我们的主要贡献是基于重新的重量矩阵参数化,该参数保证每个网络层最多具有LIPSCHITZ常数,并且导致学习的权重矩阵接近正交。因此,我们称这种层几乎是正交的Lipschitz(AOL)。在图像分类的背景下,实验和消融研究具有认证的鲁棒精度证实,AOL层获得与大多数现有方法相当的结果。但是,它们更容易实现,并且更广泛地适用,因为它们不需要计算昂贵的矩阵正交化或反转步骤作为网络体系结构的一部分。我们在https://github.com/berndprach/aol上提供代码。
translated by 谷歌翻译
我们在监督分类的背景下研究深网的过剩能力。也就是说,给定对基本假设类别的能力度量(在我们的情况下,是经验性的Rademacher的复杂性),我们(先验)可以限制该类别的数量,同时在与无约束性方面保持经验误差的同时保留经验误差?为了评估现代体系结构(例如残留网络)的过剩能力,我们扩展并统一了先前的Rademacher复杂性界限,以适应功能组成和添加以及卷积的结构。我们边界中的容量驱动项是层的Lipschitz常数和卷积权重初始化的(2,1)组的范围距离。在不同任务难度的基准数据集上进行的实验表明,(1)每个任务的容量大量超过容量,并且(2)可以将容量保持在整个任务的惊人相似水平。总体而言,这表明了重量规范的可压缩性概念,这是通过重量修剪正交的经典压缩概念。
translated by 谷歌翻译