本文介绍了独立的神经颂歌(Snode),这是一种连续深入的神经模型,能够描述完整的深神经网络。这使用了一种新型的非线性结合梯度(NCG)下降优化方案,用于训练,在该方案中可以合并Sobolev梯度以提高模型权重的平滑度。我们还提出了神经敏感性问题的一般表述,并显示了它在NCG训练中的使用方式。灵敏度分析提供了整个网络中不确定性传播的可靠度量,可用于研究模型鲁棒性并产生对抗性攻击。我们的评估表明,与Resnet模型相比,我们的新型配方会提高鲁棒性和性能,并且为设计和开发机器学习的新机会提供了改善的解释性。
translated by 谷歌翻译
神经常规差分方程(ODES)最近在各种研究域中引起了不断的关注。有一些作品研究了神经杂物的优化问题和近似能力,但他们的鲁棒性尚不清楚。在这项工作中,我们通过探索神经杂物经验和理论上的神经杂物的鲁棒性质来填补这一重要差异。我们首先通过将它们暴露于具有各种类型的扰动并随后研究相应输出的变化来提出基于神经竞争的网络(odeNets)的鲁棒性的实证研究。与传统的卷积神经网络(CNNS)相反,我们发现odeenets对随机高斯扰动和对抗性攻击示例的更稳健。然后,我们通过利用连续时间颂的流动的某种理想性能来提供对这种现象的富有识别理解,即积分曲线是非交叉的。我们的工作表明,由于其内在的稳健性,它很有希望使用神经杂散作为构建强大的深网络模型的基本块。为了进一步增强香草神经杂物杂物的鲁棒性,我们提出了时间不变的稳定神经颂(Tisode),其通过时间不变性和施加稳态约束来规则地规则地规则地对扰动数据的流程。我们表明,Tisode方法优于香草神经杂物,也可以与其他最先进的架构方法一起制造更强大的深网络。 \ url {https://github.com/hanshuyan/tisode}
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the l p -norms for p ∈ {1, 2, ∞} aiming at finding the minimal perturbation necessary to change the class of a given input. It has an intuitive geometric meaning, yields quickly high quality results, minimizes the size of the perturbation (so that it returns the robust accuracy at every threshold with a single run). It performs better or similar to stateof-the-art attacks which are partially specialized to one l p -norm, and is robust to the phenomenon of gradient masking.
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
我们追求一系列研究,试图使深度神经网络的输入输出映射的雅各布频谱规范正规化。在先前的工作依赖上边界技术的同时,我们提供了针对确切光谱规范的方案。我们证明,与以前的光谱正则化技术相比,我们的算法可以提高概括性能,同时保持了防御自然和对抗性噪声的强大保护。此外,我们进一步探讨了一些以前的推理,这些推理是关于雅各布正规化提供的强大对抗保护,并表明它可能具有误导性。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
我们介绍了嘈杂的特征混音(NFM),这是一个廉价但有效的数据增强方法,这些方法结合了基于插值的训练和噪声注入方案。不是用凸面的示例和它们的标签的凸面组合训练,而不是在输入和特征空间中使用对数据点对的噪声扰动凸组合。该方法包括混合和歧管混合作为特殊情况,但它具有额外的优点,包括更好地平滑决策边界并实现改进的模型鲁棒性。我们提供理论要理解这一点以及NFM的隐式正则化效果。与混合和歧管混合相比,我们的理论得到了经验结果的支持,展示了NFM的优势。我们表明,在一系列计算机视觉基准数据集中,使用NFM培训的剩余网络和视觉变压器在清洁数据的预测准确性和鲁棒性之间具有有利的权衡。
translated by 谷歌翻译
神经形态的神经网络处理器,以记忆中的计算横杆阵列的形式,或以亚阈值模拟和混合信号ASIC的形式,有望在基于NN的ML任务的计算密度和能源效率方面具有巨大优势。但是,由于过程变化和内在的设备物理学,这些技术容易出现计算非理想性。通过将参数噪声引入部署模型中,这会降低部署到处理器的网络的任务性能。虽然可以为每个处理器校准每个设备或单独训练网络,但这些方法对于商业部署而言是昂贵且不切实际的。因此,由于网络体系结构和参数的结果,需要替代方法来训练与参数变化固有强大的网络。我们提出了一种新的对抗网络优化算法,该算法在训练过程中攻击网络参数,并在参数变化时促进推断期间的稳健性能。我们的方法引入了正规化术语,惩罚网络对权重扰动的敏感性。我们将与先前产生参数不敏感的方法进行比较,例如辍学,体重平滑和训练过程中引入参数噪声。我们表明,我们的方法产生的模型对目标参数变化更强大,并且对随机参数变化同样强大。与其他方法相比,我们的方法在减肥景观的平坦位置中发现了最小值,这强调了我们技术发现的网络对参数扰动不太敏感。我们的工作提供了一种将神经网络体系结构部署到遭受计算非理想性的推理设备的方法,而性能的损失最少。 ...
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
HEBBIAN在获奖者全方位(WTA)网络中的可塑性对于神经形态的片上学习非常有吸引力,这是由于其高效,本地,无监督和在线性质。此外,它的生物学合理性可能有助于克服人工算法的重要局限性,例如它们对对抗攻击和长期训练时间的敏感性。但是,Hebbian WTA学习在机器学习(ML)中很少使用,这可能是因为它缺少与深度学习兼容的优化理论(DL)。在这里,我们严格地表明,由标准DL元素构建的WTA网络与我们得出的Hebbian样可塑性结合在一起,维持数据的贝叶斯生成模型。重要的是,在没有任何监督的情况下,我们的算法,SOFTHEBB,可以最大程度地减少跨渗透性,即监督DL中的共同损失函数。我们在理论上和实践中展示了这一点。关键是“软” WTA,那里没有绝对的“硬”赢家神经元。令人惊讶的是,在浅网络比较与背面的比较(BP)中,SOFTHEBB表现出超出其HEBBIAN效率的优势。也就是说,它的收敛速度更快,并且对噪声和对抗性攻击更加强大。值得注意的是,最大程度地混淆SoftheBB的攻击也使人眼睛混淆,可能将人类感知的鲁棒性与Hebbian WTA Cortects联系在一起。最后,SOFTHEBB可以将合成对象作为真实对象类的插值生成。总而言之,Hebbian效率,理论的基础,跨透明拷贝最小化以及令人惊讶的经验优势,表明SOFTHEBB可能会激发高度神经态和彻底不同,但实用且有利的学习算法和硬件加速器。
translated by 谷歌翻译
Post-hoc explanation methods are used with the intent of providing insights about neural networks and are sometimes said to help engender trust in their outputs. However, popular explanations methods have been found to be fragile to minor perturbations of input features or model parameters. Relying on constraint relaxation techniques from non-convex optimization, we develop a method that upper-bounds the largest change an adversary can make to a gradient-based explanation via bounded manipulation of either the input features or model parameters. By propagating a compact input or parameter set as symbolic intervals through the forwards and backwards computations of the neural network we can formally certify the robustness of gradient-based explanations. Our bounds are differentiable, hence we can incorporate provable explanation robustness into neural network training. Empirically, our method surpasses the robustness provided by previous heuristic approaches. We find that our training method is the only method able to learn neural networks with certificates of explanation robustness across all six datasets tested.
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
已经提出了神经常规差分方程(节点)作为流行深度学习模型的连续深度概括,例如残留网络(RESNET)。它们提供参数效率并在一定程度上在深度学习模型中自动化模型选择过程。然而,它们缺乏大量的不确定性建模和稳健性能力,这对于他们在几个现实世界应用中的使用至关重要,例如自主驾驶和医疗保健。我们提出了一种新颖的和独特的方法来通过考虑在ode求解器的结束时间$ t $上的分布来模拟节点的不确定性。所提出的方法,潜在的时间节点(LT节点)将$ T $视为潜在变量,并应用贝叶斯学习,以获得超过数据的$ $ $。特别地,我们使用变分推理来学习近似后的后验和模型参数。通过考虑来自后部的不同样本的节点表示来完成预测,并且可以使用单个向前通过有效地完成。由于$ t $隐含地定义节点的深度,超过$ t $的后部分发也会有助于节点的模型选择。我们还提出了一种自适应潜在的时间节点(Alt-Node),其允许每个数据点在终点上具有不同的后分布。 Alt-Node使用摊销变分推理来使用推理网络学习近似后的后验。我们展示了通过合成和几个现实世界图像分类数据的实验来建立不确定性和鲁棒性的提出方法的有效性。
translated by 谷歌翻译
研究神经网络中重量扰动的敏感性及其对模型性能的影响,包括泛化和鲁棒性,是一种积极的研究主题,因为它对模型压缩,泛化差距评估和对抗攻击等诸如模型压缩,泛化差距评估和对抗性攻击的广泛机器学习任务。在本文中,我们在重量扰动下的鲁棒性方面提供了前馈神经网络的第一积分研究和分析及其在体重扰动下的泛化行为。我们进一步设计了一种新的理论驱动损失功能,用于培训互动和强大的神经网络免受重量扰动。进行实证实验以验证我们的理论分析。我们的结果提供了基本洞察,以表征神经网络免受重量扰动的泛化和鲁棒性。
translated by 谷歌翻译