研究神经网络中重量扰动的敏感性及其对模型性能的影响,包括泛化和鲁棒性,是一种积极的研究主题,因为它对模型压缩,泛化差距评估和对抗攻击等诸如模型压缩,泛化差距评估和对抗性攻击的广泛机器学习任务。在本文中,我们在重量扰动下的鲁棒性方面提供了前馈神经网络的第一积分研究和分析及其在体重扰动下的泛化行为。我们进一步设计了一种新的理论驱动损失功能,用于培训互动和强大的神经网络免受重量扰动。进行实证实验以验证我们的理论分析。我们的结果提供了基本洞察,以表征神经网络免受重量扰动的泛化和鲁棒性。
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial attacks. Ideally, a robust model shall perform well on both the perturbed training data and the unseen perturbed test data. It is found empirically that fitting perturbed training data is not hard, but generalizing to perturbed test data is quite difficult. To better understand adversarial generalization, it is of great interest to study the adversarial Rademacher complexity (ARC) of deep neural networks. However, how to bound ARC in multi-layers cases is largely unclear due to the difficulty of analyzing adversarial loss in the definition of ARC. There have been two types of attempts of ARC. One is to provide the upper bound of ARC in linear and one-hidden layer cases. However, these approaches seem hard to extend to multi-layer cases. Another is to modify the adversarial loss and provide upper bounds of Rademacher complexity on such surrogate loss in multi-layer cases. However, such variants of Rademacher complexity are not guaranteed to be bounds for meaningful robust generalization gaps (RGG). In this paper, we provide a solution to this unsolved problem. Specifically, we provide the first bound of adversarial Rademacher complexity of deep neural networks. Our approach is based on covering numbers. We provide a method to handle the robustify function classes of DNNs such that we can calculate the covering numbers. Finally, we provide experiments to study the empirical implication of our bounds and provide an analysis of poor adversarial generalization.
translated by 谷歌翻译
经认证的稳健性是安全关键应用中的深度神经网络的理想性质,流行的训练算法可以通过计算其Lipschitz常数的全球界限来认证神经网络的鲁棒性。然而,这种界限往往松动:它倾向于过度规范神经网络并降低其自然精度。绑定的Lipschitz绑定可以在自然和认证的准确性之间提供更好的权衡,但通常很难根据网络的非凸起计算。在这项工作中,我们通过考虑激活函数(例如Relu)和权重矩阵之间的相互作用,提出了一种有效和培训的\ emph {本地} Lipschitz上限。具体地,当计算权重矩阵的诱发标准时,我们消除了相应的行和列,其中保证激活函数在每个给定数据点的邻域中是常数,它提供比全局Lipschitz常数的可怕更严格的绑定神经网络。我们的方法可用作插入式模块,以拧紧在许多可认证的训练算法中绑定的Lipschitz。此外,我们建议夹住激活功能(例如,Relu和Maxmin),具有可读的上限阈值和稀疏性损失,以帮助网络实现甚至更严格的本地嘴唇尖端。在实验上,我们表明我们的方法始终如一地优于Mnist,CiFar-10和Tinyimagenet数据集的清洁和认证准确性,具有各种网络架构的清洁和认证的准确性。
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
对抗性可转移性是一种有趣的性质 - 针对一个模型制作的对抗性扰动也是对另一个模型有效的,而这些模型来自不同的模型家庭或培训过程。为了更好地保护ML系统免受对抗性攻击,提出了几个问题:对抗性转移性的充分条件是什么,以及如何绑定它?有没有办法降低对抗的转移性,以改善合奏ML模型的鲁棒性?为了回答这些问题,在这项工作中,我们首先在理论上分析和概述了模型之间的对抗性可转移的充分条件;然后提出一种实用的算法,以减少集合内基础模型之间的可转换,以提高其鲁棒性。我们的理论分析表明,只有促进基础模型梯度之间的正交性不足以确保低可转移性;与此同时,模型平滑度是控制可转移性的重要因素。我们还在某些条件下提供了对抗性可转移性的下界和上限。灵感来自我们的理论分析,我们提出了一种有效的可转让性,减少了平滑(TRS)集合培训策略,以通过实施基础模型之间的梯度正交性和模型平滑度来培训具有低可转换性的强大集成。我们对TRS进行了广泛的实验,并与6个最先进的集合基线进行比较,防止不同数据集的8个白箱攻击,表明所提出的TRS显着优于所有基线。
translated by 谷歌翻译
我们介绍了嘈杂的特征混音(NFM),这是一个廉价但有效的数据增强方法,这些方法结合了基于插值的训练和噪声注入方案。不是用凸面的示例和它们的标签的凸面组合训练,而不是在输入和特征空间中使用对数据点对的噪声扰动凸组合。该方法包括混合和歧管混合作为特殊情况,但它具有额外的优点,包括更好地平滑决策边界并实现改进的模型鲁棒性。我们提供理论要理解这一点以及NFM的隐式正则化效果。与混合和歧管混合相比,我们的理论得到了经验结果的支持,展示了NFM的优势。我们表明,在一系列计算机视觉基准数据集中,使用NFM培训的剩余网络和视觉变压器在清洁数据的预测准确性和鲁棒性之间具有有利的权衡。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
While neural networks have achieved high accuracy on standard image classification benchmarks, their accuracy drops to nearly zero in the presence of small adversarial perturbations to test inputs. Defenses based on regularization and adversarial training have been proposed, but often followed by new, stronger attacks that defeat these defenses. Can we somehow end this arms race? In this work, we study this problem for neural networks with one hidden layer. We first propose a method based on a semidefinite relaxation that outputs a certificate that for a given network and test input, no attack can force the error to exceed a certain value. Second, as this certificate is differentiable, we jointly optimize it with the network parameters, providing an adaptive regularizer that encourages robustness against all attacks. On MNIST, our approach produces a network and a certificate that no attack that perturbs each pixel by at most = 0.1 can cause more than 35% test error.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
最近,张等人。(2021)基于$ \ ell_ \ infty $ -distance函数开发出一种新的神经网络架构,自然拥有经过认证的$ \ ell_ \ infty $坚固的稳健性。尽管具有出色的理论特性,但到目前为止的模型只能实现与传统网络的可比性。在本文中,我们通过仔细分析培训流程,大大提高了$ \ ell_ \ infty $ -distance网的认证稳健性。特别是,我们展示了$ \ ell_p $ -rexation,这是克服模型的非平滑度的关键方法,导致早期训练阶段的意外的大型嘴唇浓度。这使得优化不足以使用铰链损耗并产生次优溶液。鉴于这些调查结果,我们提出了一种简单的方法来解决上述问题,设计一种新的客观函数,这些功能将缩放的跨熵损失结合在剪切铰链损失。实验表明,使用拟议的培训策略,$ \ ell_ \ infty $-distance网的认证准确性可以从Cifar-10($ \ epsilon = 8/255 $)的33.30%到40.06%的显着提高到40.06%,同时显着优于表现优势该地区的其他方法。我们的结果清楚地展示了$ \ ell_ \ infty $-distance净的有效性和潜力,以获得认证的稳健性。代码在https://github.com/zbh2047/l_inf-dist-net-v2上获得。
translated by 谷歌翻译
近年来,已取得了巨大进展,以通过半监督学习(SSL)来纳入未标记的数据来克服效率低下的监督问题。大多数最先进的模型是基于对未标记的数据追求一致的模型预测的想法,该模型被称为输入噪声,这称为一致性正则化。尽管如此,对其成功的原因缺乏理论上的见解。为了弥合理论和实际结果之间的差距,我们在本文中提出了SSL的最坏情况一致性正则化技术。具体而言,我们首先提出了针对SSL的概括,该概括由分别在标记和未标记的训练数据上观察到的经验损失项组成。在这种界限的激励下,我们得出了一个SSL目标,该目标可最大程度地减少原始未标记的样本与其多重增强变体之间最大的不一致性。然后,我们提供了一种简单但有效的算法来解决提出的最小问题,从理论上证明它会收敛到固定点。五个流行基准数据集的实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
引起超越预测的对手示例被广泛用于评估和改善机器学习模型的鲁棒性。然而,目前的研究侧重于监督学习任务,依赖于地面真理数据标签,目标目标或从训练有素的分类器的监督。在本文中,我们提出了一种为无监督模型产生对抗性示例的框架,并证明了数据增强的新应用。我们的框架利用相互信息神经估算器作为信息理论相似度措施,以产生未经监督的对抗示例。我们提出了一种新的MinMax算法,可提供可提供的融合保证,以便有效地产生无监督的对抗性示例。我们的框架也可以扩展到受监督的对抗性示例。在使用无监督的对冲示例作为用于模型再检验的简单插件数据增强工具时,在不同无监督的任务和数据集中一直观察到显着的改进,包括数据重建,表示学习和对比学习。我们的结果表明,通过对抗示例研究和改善无监督机器学习的新方法和相当大的优势。
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
我们为研究通过将噪声注入隐藏状态而训练的经常性神经网络(RNN)提供了一般框架。具体地,我们考虑RNN,其可以被视为由输入数据驱动的随机微分方程的离散化。该框架允许我们通过在小噪声制度中导出近似显式规范器来研究一般噪声注入方案的隐式正则化效果。我们发现,在合理的假设下,这种隐含的正规化促进了更平坦的最小值;它偏向具有更稳定动态的模型;并且,在分类任务中,它有利于具有较大分类余量的模型。获得了全局稳定性的充分条件,突出了随机稳定的现象,其中噪音注入可以在训练期间提高稳定性。我们的理论得到了经验结果支持,证明RNN对各种输入扰动具有改善的鲁棒性。
translated by 谷歌翻译
With a goal of understanding what drives generalization in deep networks, we consider several recently suggested explanations, including norm-based control, sharpness and robustness. We study how these measures can ensure generalization, highlighting the importance of scale normalization, and making a connection between sharpness and PAC-Bayes theory. We then investigate how well the measures explain different observed phenomena.
translated by 谷歌翻译