人类共享的控制允许人类与AI进行互动和协作,以在复杂的环境中完成控制任务。以前的强化学习(RL)方法试图以目标条件的设计来实现可控制的政策,而付出了重新设计奖励功能和培训范式。受到神经科学方法研究灵长类动物皮层的启发,我们开发了一种简单但有效的基于频率的方法,称为\ textit {策略解剖},以使学习神经控制器的中间表示与代理行为的运动属性相结合。在不修改神经控制器或检验模型的情况下,提出的方法可以将给定的RL训练的政策转换为人际关系政策。我们评估了关于自动驾驶和运动的RL任务的建议方法。实验表明,通过政策解剖在驾驶任务中实现的人类共享控制可以大大改善看不见的交通场景的性能和安全性。随着人类的循环,机器人机器人也表现出多功能的可控运动技能,即使他们只接受了前进的训练。我们的结果表明,通过解释自主代理的学习代表来实施人类共享自治的有希望的方向。演示视频和代码将在https://metadriverse.github.io/policydissect上提供。
translated by 谷歌翻译
安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
自驱动粒子(SDP)描述了日常生活中常见的一类常见的多种子体系统,例如植绒鸟类和交通流量。在SDP系统中,每个代理商都追求自己的目标,并不断改变其与附近代理商的合作或竞争行为。手动设计用于此类SDP系统的控制器是耗时的,而产生的紧急行为往往是不可逼真的,也不是更广泛的。因此,SDP系统的现实模拟仍然具有挑战性。强化学习提供了一种吸引人的替代方案,用于自动化SDP控制器的开发。然而,以前的多档强化学习(Marl)方法将代理人定义为手头之前的队友或敌人,这未能捕获每个代理的作用的SDP的本质,即使在一个集中也变化或竞争。为了用Marl模拟SDP,一个关键挑战是协调代理的行为,同时仍然最大化个人目标。将交通仿真作为测试床,在这项工作中,我们开发了一种称为协调政策优化(Copo)的新型MARL方法,该方法包括社会心理学原理来学习SDP的神经控制器。实验表明,与各种度量标准的Marl基线相比,该方法可以实现优越的性能。明显的车辆明显地表现出复杂和多样化的社会行为,以提高整个人口的性能和安全性。演示视频和源代码可用于:https://decisionforce.github.io/copo/
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
如果我们想在将它们部署在现实中之前在模拟中训练机器人,那么假定减少SIM2REAL差距的人似乎很自然,并且几乎是不言而喻的,涉及创建富裕性的模拟器(因为现实就是事实)。我们挑战了这一假设并提出了相反的假设-SIM2REAL转移机器人可以通过较低(不是更高)的保真度模拟来改善。我们使用3种不同的机器人(A1,Aliengo,Spot)对这一假设进行了系统的大规模评估 - 在现实世界中以及2个不同的模拟器(栖息地和Igibson)。我们的结果表明,与期望相反,增加忠诚无助于学习。由于模拟速度缓慢(防止大规模学习)和对模拟物理学不准确的过度拟合,因此性能较差。取而代之的是,使用现实世界数据构建机器人运动的简单模型可以改善学习和概括。
translated by 谷歌翻译
通过腿部机器人在具有挑战性的环境上进行本地导航的通用方法需要路径计划,路径跟随和运动,这通常需要机动控制策略,以准确跟踪指挥速度。但是,通过将导航问题分解为这些子任务,我们限制了机器人的功能,因为各个任务不考虑完整的解决方案空间。在这项工作中,我们建议通过深入强化学习来训练端到端政策来解决完整的问题。机器人不必在提供的时间内到达目标位置,而不是不断跟踪预算的路径。该任务的成功仅在情节结束时进行评估,这意味着该策略不需要尽快到达目标。可以免费选择其路径和运动步态。以这种方式培训政策可以打开更多可能的解决方案,这使机器人能够学习更多复杂的行为。我们比较我们的速度跟踪方法,并表明任务奖励的时间依赖性对于成功学习这些新行为至关重要。最后,我们证明了在真正的四足动物机器人上成功部署政策。机器人能够跨越具有挑战性的地形,这是以前无法实现的,同时使用更节能的步态并达到更高的成功率。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
我们解决了动态环境中感知力的问题。在这个问题中,四足动物的机器人必须对环境混乱和移动的障碍物表现出强大而敏捷的步行行为。我们提出了一个名为Prelude的分层学习框架,该框架将感知力的问题分解为高级决策,以预测导航命令和低级步态生成以实现目标命令。在此框架中,我们通过在可进入手推车上收集的人类示范和使用加固学习(RL)的低级步态控制器(RL)上收集的人类示范中的模仿学习来训练高级导航控制器。因此,我们的方法可以从人类监督中获取复杂的导航行为,并从反复试验中发现多功能步态。我们证明了方法在模拟和硬件实验中的有效性。可以在https://ut-aut-autin-rpl.github.io/prelude上找到视频和代码。
translated by 谷歌翻译
在这项工作中,我们为软机器人蛇提供了一种基于学习的目标跟踪控制方法。受到生物蛇的启发,我们的控制器由两个关键模块组成:用于学习靶向轨迹行为的增强学习(RL)模块,给出了软蛇机器人的随机动力学,以及带有Matsuoka振荡器的中央模式生成器(CPG)系统,用于产生稳定而多样的运动模式。基于提议的框架,我们全面讨论了软蛇机器人的可操作性,包括在其蛇形运动期间的转向和速度控制。可以将这种可操作性映射到CPG系统振荡模式的控制中。通过对Matsuoka CPG系统振荡性能的理论分析,这项工作表明,实现我们软蛇机器人的自由移动性的关键是正确限制和控制Matsuoka CpG系统的某些系数比率。基于此分析,我们系统地制定了CPG系统的可控系数,供RL代理运行。通过实验验证,我们表明,在模拟环境中学习的控制政策可以直接应用于控制我们的真正的蛇机器人以执行目标跟踪任务,而不管模拟与现实世界之间的物理环境差距如何。实验结果还表明,与我们先前的方法和基线RL方法(PPO)相比,我们的方法对SIM到现实过渡的适应性和鲁棒性得到了显着改善。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
我们利用了肢体机器人互动和预言的互补优势,实现了点球导航。腿系统能够穿过比轮式机器人更复杂的地形,而是为了充分利用这种能力,我们需要导航系统中的高级路径规划仪,了解在不同地形上的低级运动策略的步行能力。我们通过使用壁虎搜寻反馈来实现这一目标来估计行走政策的安全操作限制,并感知意外障碍和地形性质,如可能被视力错过的地面的平滑度或柔软度。导航系统使用车载相机来生成占用映射和相应的成本图以实现目标。然后,FMM(快速行进方法)规划器然后生成目标路径。速度命令生成器将此作为输入,以从安全顾问,意外障碍和地形速度限制生成作为输入附加约束的机车策略的所需速度。与轮式机器人(Logobot)基线(Logobot)基线和其他具有不相交的基调规划和低级控制的基线显示出卓越的性能。我们还在具有板载传感器和计算的Quadruped Robot上显示了我们系统的真实部署。 https://navigation-locomotion.github.io/camera-ready的视频
translated by 谷歌翻译
数据驱动的模拟器承诺高数据效率进行驾驶策略学习。当用于建模相互作用时,这种数据效率变为瓶颈:小型基础数据集通常缺乏用于学习交互式驾驶的有趣和具有挑战性的边缘案例。我们通过提出使用绘制的ADO车辆学习强大的驾驶策略的仿真方法来解决这一挑战。因此,我们的方法可用于学习涉及多代理交互的策略,并允许通过最先进的策略学习方法进行培训。我们评估了驾驶中学习标准交互情景的方法。在广泛的实验中,我们的工作表明,由此产生的政策可以直接转移到全规模的自治车辆,而无需使用任何传统的SIM-to-Real传输技术,例如域随机化。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
Aerial view of test environment (b) Vision-based driving, view from onboard camera (c) Side view of vehicle Fig. 1. Conditional imitation learning allows an autonomous vehicle trained end-to-end to be directed by high-level commands. (a) We train and evaluate robotic vehicles in the physical world (top) and in simulated urban environments (bottom). (b) The vehicles drive based on video from a forward-facing onboard camera. At the time these images were taken, the vehicle was given the command "turn right at the next intersection". (c) The trained controller handles sensorimotor coordination (staying on the road, avoiding collisions) and follows the provided commands.
translated by 谷歌翻译
连续空间中有效有效的探索是将加固学习(RL)应用于自主驾驶的核心问题。从专家演示或为特定任务设计的技能可以使探索受益,但是它们通常是昂贵的,不平衡/次优的,或者未能转移到各种任务中。但是,人类驾驶员可以通过在整个技能空间中进行高效和结构性探索而不是具有特定于任务的技能的有限空间来适应各种驾驶任务。受上述事实的启发,我们提出了一种RL算法,以探索所有可行的运动技能,而不是一组有限的特定于任务和以对象为中心的技能。没有演示,我们的方法仍然可以在各种任务中表现出色。首先,我们以纯粹的运动角度构建了一个任务不合时宜的和以自我为中心的(TAEC)运动技能库,该运动技能库是足够多样化的,可以在不同的复杂任务中重复使用。然后,将运动技能编码为低维的潜在技能空间,其中RL可以有效地进行探索。在各种具有挑战性的驾驶场景中的验证表明,我们提出的方法TAEC-RL在学习效率和任务绩效方面的表现显着优于其同行。
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译