学习一项难以捉摸的问题域的知情启发式功能是一个难以捉摸的问题。虽然有了已知的神经网络架构来代表这种启发式知识,但它不明显地了解了哪些具体信息以及针对理解结构的技术有助于提高启发式的质量。本文介绍了一种网络模型,用于学习一种能够通过使用注意机制通过最佳计划模仿与状态空间的遥远部分相互关联的启发式机制,这大幅提高了一种良好的启发式功能的学习。为了抵消制定难度越来越困难问题的方法的限制,我们展示了课程学习的使用,其中新解决的问题实例被添加到培训集中,反过来有助于解决更高复杂性的问题和远远超出所有现有基线的表演,包括古典规划启发式。我们展示了其对网格型PDDL结构域的有效性。
translated by 谷歌翻译
通过深度神经网络实现的A*算法的启发式函数的优化通常是通过最大程度地减少正方形根损失的目标成本估计值来完成的。本文认为,这不一定会导致对A*算法的更快搜索,因为其执行依赖于相对值而不是绝对值。作为缓解措施,我们提出了L*损失,该损失是A*搜索中过度扩展状态的数量上限。当用于优化最先进的深度神经网络的L*损失,用于在索科班等迷宫领域的自动化计划和带有传送的迷宫,可显着改善解决问题的比例,基础计划的质量,并降低扩大状态的数量达到约50%
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
顺序决策的一种流行方法是,以机器学习(ML)方法(如策略学习)进行基于模拟器的搜索。另一方面,如果有完整的声明模型,模型放松启发式方法可以有效地指导搜索。在这项工作中,我们考虑了从业人员如何在无法使用完整符号模型的设置上改善基于ML的黑盒计划。我们表明,指定一个不完整的条带模型,该模型仅描述了问题的一部分,才能使用放松启发式方法。我们对几个计划域的发现表明,这是改善基于ML的黑盒计划的有效方法,而不是收集更多数据或调整ML架构。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
顺序决策的两种常见方法是AI计划(AIP)和强化学习(RL)。每个都有优点和缺点。 AIP是可解释的,易于与象征知识集成,并且通常是有效的,但需要前期逻辑域的规范,并且对噪声敏感; RL仅需要奖励的规范,并且对噪声是强大的,但效率低下,不容易提供外部知识。我们提出了一种综合方法,将高级计划与RL结合在一起,保留可解释性,转移和效率,同时允许对低级计划行动进行强有力的学习。我们的方法通过在AI计划问题的状态过渡模型与Markov决策过程(MDP)的抽象状态过渡系统(MDP)之间建立对应关系,从而定义了AIP操作员的分层增强学习(HRL)的选项。通过添加内在奖励来鼓励MDP和AIP过渡模型之间的一致性来学习选项。我们通过比较Minigrid和N房间环境中RL和HRL算法的性能来证明我们的综合方法的好处,从而显示了我们方法比现有方法的优势。
translated by 谷歌翻译
近年来,深入的强化学习(RL)在各种组合搜索领域(例如两人游戏和科学发现)中都取得了成功。但是,直接在计划域中应用深度RL仍然具有挑战性。一个主要的困难是,如果没有人工制作的启发式功能,奖励信号除非学习框架发现任何解决方案计划,否则奖励信号将保持零。随着计划的最小长度的增长,搜索空间变为\ emph {指数更大},这是计划实例的严重限制,该实例的计划最小计划长度为数百到数千步。以前的学习框架可以增强使用深神经网络和额外生成的子观念的图形搜索在各种具有挑战性的计划域中取得了成功。但是,生成有用的子目标需要广泛的领域知识。我们提出了一种独立于域的方法,该方法可以通过图值迭代来增强图形搜索,以求解针对域特有的求解器无法实现的硬计划实例。特别是,我们的方法还没有仅从发现的计划中获得学习信号,而是从未达到目标状态的失败尝试中学习。图值迭代组件可以利用本地搜索空间的图形结构并提供更有信息的学习信号。我们还展示了如何使用课程策略来平滑学习过程并对图形值迭代量表的完整分析并实现学习。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
这篇简短的评论旨在使读者熟悉与计划,调度和学习有关的最新作品。首先,我们研究最先进的计划算法。我们简要介绍神经网络。然后,我们更详细地探索图形神经网络,这是一种适合处理图形结构输入的神经网络的最新变体。我们简要描述了强化学习算法和迄今为止设计的一些方法的概念。接下来,我们研究了一些成功的方法,结合了用于路径规划的神经网络。最后,我们专注于不确定性的时间计划问题。
translated by 谷歌翻译
我们介绍了一种新的算法,基于回归的监督学习(RSL),用于每个实例神经网络(NN)为经典计划问题定义的启发式功能。RSL使用回归来选择与目标不同距离的相关状态集。然后,RSL制定了一个监督的学习问题,以获取定义NN启发式的参数,并使用标记为目标状态的精确或估计距离的选定状态。我们的实验研究表明,RSL在覆盖范围内优于先前的经典计划NN启发式功能,同时需要减少两个数量级的训练时间。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
复杂的推理问题包含确定良好行动计划所需的计算成本各不相同的状态。利用此属性,我们提出了自适应亚go搜索(ADASUBS),这是一种适应性地调整计划范围的搜索方法。为此,ADASUBS在不同距离上产生了不同的子目标。采用验证机制来迅速滤除无法到达的子目标,从而使人专注于可行的进一步子目标。通过这种方式,ADASUBS受益于计划的效率更长的子目标,以及对较短的计划的良好控制。我们表明,ADASUB在三个复杂的推理任务上大大超过了层次规划算法:Sokoban,The Rubik的Cube和不平等现象证明了基准INT,为INT设定了新的最先进。
translated by 谷歌翻译
尽管实用的求解器在各种NP完整域中取得了成功,例如SAT和CSP以及使用深度强化学习来解决诸如GO之类的两人游戏,但某些类别的Pspace-Hard计划问题仍然遥不可及。由于硬实例的指数搜索空间,即使是精心设计的域专用求解器也可能会迅速失败。结合了传统搜索方法的最新作品,例如最佳优先搜索和蒙特卡洛树搜索,以及深度神经网络(DNN)的启发式方法,已经显示出有希望的进步,并且可以解决超出专业求解器以外的大量艰苦计划实例。为了更好地理解这些方法为何起作用,我们研究了基于DNN的最佳优先搜索的政策和价值网络的相互作用,并展示了该策略网络的惊人有效性,并通过价值网络进一步增强了价值网络,作为指导启发式的启发式启发式程序。搜索。为了进一步理解现象,我们研究了搜索算法的成本分布,发现索科巴实例可以具有重尾的运行时分布,左侧和右侧都有尾巴。特别是,我们首次展示了\ textit {左尾巴}的存在,并提出了一个抽象的树模型,可以从经验上解释这些尾巴的外观。该实验表明,政策网络是一种强大的启发式指导搜索的关键作用,这可以通过避免探索成倍的尺寸的子树来导致左尾部具有多项式缩放。我们的结果还证明了与传统组合求解器中广泛使用的随机重新启动的重要性,用于避免左和右重尾巴的基于DNN的搜索方法。
translated by 谷歌翻译
最近的研究表明,神经组合优化(NCO)在许多组合优化问题(如路由)中具有优于传统算法的优点,但是对于涉及相互条件的动作空间的包装,诸如打包的更加复杂的优化任务的效率较低。在本文中,我们提出了一种经常性的条件查询学习(RCQL)方法来解决2D和3D包装问题。我们首先通过经常性编码器嵌入状态,然后采用先前操作的条件查询注意。条件查询机制填充了学习步骤之间的信息差距,将问题塑造为Markov决策过程。从复发中受益,单个RCQL模型能够处理不同尺寸的包装问题。实验结果表明,RCQL可以有效地学习用于离线和在线条带包装问题(SPP)的强烈启发式,优于空间利用率范围广泛的基线。 RCQL与最先进的方法相比,在离线2D 40盒案例中将平均箱间隙比率降低1.83%,3.84%。同时,我们的方法还实现了5.64%的空间利用率,对于1000件物品的空间利用率比现有技术更高。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
我们提出了一种新颖的通用方法,该方法可以找到动作的,离散的对象和效果类别,并为非平凡的行动计划建立概率规则。我们的机器人使用原始操作曲目与对象进行交互,该曲目被认为是早先获取的,并观察到它在环境中可以产生的效果。为了形成动作界面的对象,效果和关系类别,我们在预测性的,深的编码器折线网络中采用二进制瓶颈层,该网络以场景的形象和应用为输入应用的动作,并在场景中生成结果效果在像素坐标中。学习后,二进制潜在向量根据机器人的相互作用体验代表动作驱动的对象类别。为了将神经网络代表的知识提炼成对符号推理有用的规则,对决策树进行了训练以复制其解码器功能。概率规则是从树的决策路径中提取的,并在概率计划域定义语言(PPDDL)中表示,允许现成的计划者根据机器人的感觉运动体验所提取的知识进行操作。模拟机器人操纵器的建议方法的部署使发现对象属性的离散表示,例如``滚动''和``插入''。反过来,将这些表示形式用作符号可以生成有效的计划来实现目标,例如建造所需高度的塔楼,证明了多步物体操纵方法的有效性。最后,我们证明了系统不仅通过评估其对MNIST 8个式式域的适用性来限于机器人域域,在该域​​中,学习的符号允许生成将空图块移至任何给定位置的计划。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译