顺序决策的一种流行方法是,以机器学习(ML)方法(如策略学习)进行基于模拟器的搜索。另一方面,如果有完整的声明模型,模型放松启发式方法可以有效地指导搜索。在这项工作中,我们考虑了从业人员如何在无法使用完整符号模型的设置上改善基于ML的黑盒计划。我们表明,指定一个不完整的条带模型,该模型仅描述了问题的一部分,才能使用放松启发式方法。我们对几个计划域的发现表明,这是改善基于ML的黑盒计划的有效方法,而不是收集更多数据或调整ML架构。
translated by 谷歌翻译
我们介绍了一种新的算法,基于回归的监督学习(RSL),用于每个实例神经网络(NN)为经典计划问题定义的启发式功能。RSL使用回归来选择与目标不同距离的相关状态集。然后,RSL制定了一个监督的学习问题,以获取定义NN启发式的参数,并使用标记为目标状态的精确或估计距离的选定状态。我们的实验研究表明,RSL在覆盖范围内优于先前的经典计划NN启发式功能,同时需要减少两个数量级的训练时间。
translated by 谷歌翻译
学习一项难以捉摸的问题域的知情启发式功能是一个难以捉摸的问题。虽然有了已知的神经网络架构来代表这种启发式知识,但它不明显地了解了哪些具体信息以及针对理解结构的技术有助于提高启发式的质量。本文介绍了一种网络模型,用于学习一种能够通过使用注意机制通过最佳计划模仿与状态空间的遥远部分相互关联的启发式机制,这大幅提高了一种良好的启发式功能的学习。为了抵消制定难度越来越困难问题的方法的限制,我们展示了课程学习的使用,其中新解决的问题实例被添加到培训集中,反过来有助于解决更高复杂性的问题和远远超出所有现有基线的表演,包括古典规划启发式。我们展示了其对网格型PDDL结构域的有效性。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
完全可观察到的非确定性(FONT)计划通过具有非确定性效果的行动模型不确定性。现有的FONS计划算法是有效的,并采用了广泛的技术。但是,大多数现有算法对于处理非确定性和任务规模并不强大。在本文中,我们开发了一种新颖的迭代深度优先搜索算法,该算法解决了精心的计划任务并产生了强大的循环策略。我们的算法是针对精心计划的明确设计的,更直接地解决了Fond Planning的非确定性方面,并且还利用了启发式功能的好处,以使算法在迭代搜索过程中更有效。我们将提出的算法与著名的Food Planners进行了比较,并表明它在考虑不同的指标的几种不同类型的FOND领域中具有良好的性能。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.
translated by 谷歌翻译
有关行动成本的信息对于现实世界中的AI规划应用程序至关重要。最近的方法不仅依靠声明性的行动模型,还使用了在计划阶段应用的黑框外部动作成本估算器,通常是从数据中学到的。但是,这些可能在计算上很昂贵,并产生不确定的值。在本文中,我们建议对确定性计划的概括,并允许在多个估计器之间选择动作成本,以平衡计算时间与有限估计不确定性。这使问题表示能力更丰富,并且相应地更现实。重要的是,它允许计划者限制计划的准确性,从而提高可靠性,同时减少不必要的计算负担,这对于扩展到大问题至关重要。我们介绍了一种搜索算法,概括了$ a^*$,该算法解决了此类计划问题和其他算法扩展。除了理论保证外,与替代方案相比,广泛的实验还显示出大量的运行时节省节省。
translated by 谷歌翻译
在AI研究中,合成动作计划通常使用了抽象地指定由于动作而导致的动作的描述性模型,并针对有效计算状态转换来定制。然而,执行计划的动作已经需要运行模型,其中使用丰富的计算控制结构和闭环在线决策来指定如何在非预定的执行上下文中执行动作,对事件作出反应并适应展开情况。整合行动和规划的审议演员通常需要将这两种模型一起使用 - 在尝试开发不同的型号时会导致问题,验证它们的一致性,并顺利交错和规划。作为替代方案,我们定义和实施综合作用和规划系统,其中规划和行为使用相同的操作模型。这些依赖于提供丰富的控制结构的分层任务导向的细化方法。称为反应作用发动机(RAE)的作用组件由众所周知的PRS系统启发。在每个决定步骤中,RAE可以从计划者获取建议,以获得关于效用功能的近乎最佳选择。随时计划使用像UPOM的UCT类似的蒙特卡罗树搜索程序,其推出是演员操作模型的模拟。我们还提供与RAE和UPOM一起使用的学习策略,从在线代理体验和/或模拟计划结果,从决策背景下映射到方法实例以及引导UPOM的启发式函数。我们展示了富豪朝向静态域的最佳方法的渐近融合,并在实验上展示了UPOM和学习策略显着提高了作用效率和鲁棒性。
translated by 谷歌翻译
了解强化学习(RL)代理的新兴行为可能很困难,因为这种代理通常使用高度复杂的决策程序在复杂的环境中进行训练。这引起了RL中解释性的多种方法,旨在调和可能在主体行为与观察者预期的行为之间产生的差异。最近的方法取决于域知识,这可能并非总是可用的,分析代理商的策略,或者是对基础环境的特定要素的分析,通常被建模为马尔可夫决策过程(MDP)。我们的主要主张是,即使基本的MDP尚不完全了解(例如,尚未准确地了解过渡概率),也没有由代理商维护(即,在使用无模型方法时),但仍可以利用它为自动生成解释。为此,我们建议使用以前在文献中使用的正式MDP抽象和转换来加快寻找最佳策略的搜索,以自动产生解释。由于这种转换通常基于环境的符号表示,因此它们可能代表了预期和实际代理行为之间差距的有意义的解释。我们正式定义了这个问题,建议一类可用于解释新兴行为的转换,并提出了有效搜索解释的方法。我们演示了一组标准基准测试的方法。
translated by 谷歌翻译
在对关节对象表示表示的工作之后,引入了面向对象的网络(FOON)作为机器人的知识图表示。以双方图的形式,Foon包含符号(高级)概念,可用于机器人对任务及其对象级别计划的环境的理解及其环境。在本文之前,几乎没有做任何事情来证明如何通过任务树检索从FOON获取的任务计划如何由机器人执行,因为Foon中的概念太抽象了,无法立即执行。我们提出了一种分层任务计划方法,该方法将FOON图转换为基于PDDL的域知识表示操作计划的表示。由于这个过程,可以获取一个任务计划,即机器人可以从头到尾执行,以利用动态运动原始功能(DMP)的形式使用动作上下文和技能。我们演示了从计划到使用Coppeliasim执行的整个管道,并展示如何将学习的动作上下文扩展到从未见过的场景。
translated by 谷歌翻译
AI最近的突破表明了深度学习和深度增强学习的显着力量。然而,这些发展已与特定任务联系在一起,并且分销外概括的进展受到限制。虽然假设可以通过结合合适的感应偏差来克服这些限制,但感应偏差本身的概念往往含糊不清,并且不提供有意义的指导。在论文中,我阐述了不同的学习方法,其中表示没有从神经结构中的偏差产生偏差,而是通过具有已知语义的给定的目标语言来学习。基本思想隐含在主流AI中,其中表示代表以从一阶逻辑的片段到概率结构因果模型的语言编码。挑战是从数据中学习传统上用手制作的表示。泛化是语言语义的结果。本文的目标是使这些想法明确,将它们放在更广泛的背景下,其中目标语言的设计至关重要,并在学习行动和计划的背景下说明它们。为此,在一般讨论之后,我考虑学习行动,一般政策和亚国的陈述(“内在奖励”)。在这些情况下,学习被制定为组合问题,但没有任何东西可以防止使用深度学习技术。实际上,通过具有已知语言的语言的学习表示提供了一个待学习的内容,而使用神经网络的学习表示提供了可以学习陈述的补充说明。挑战和机会是将两者带到一起。
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
机器人中的任务和运动规划问题通常将符号规划与连续状态和动作变量相处的运动优化相结合,从而满足满足在任务变量上强加的逻辑约束的轨迹。符号规划可以用任务变量的数量呈指数级级,因此最近的工作诸如PDDLSTREAM的工作侧重于乐观规划,以逐步增长的对象和事实,直到找到可行的轨迹。然而,这种设置以宽度第一的方式被彻底地且均匀地扩展,无论手头的问题的几何结构如何,这使得具有大量物体的长时间地理推理,这令人难以耗时。为了解决这个问题,我们提出了一个几何通知的符号规划员,以最佳的方式扩展了一组对象和事实,优先由从现有搜索计算中学到的基于神经网络的基于神经网络的分数。我们在各种问题上评估我们的方法,并展示了在大型或困难情景中规划的提高能力。我们还在几个块堆叠操作任务中将算法应用于7DOF机器人手臂。
translated by 谷歌翻译
顺序决策的两种常见方法是AI计划(AIP)和强化学习(RL)。每个都有优点和缺点。 AIP是可解释的,易于与象征知识集成,并且通常是有效的,但需要前期逻辑域的规范,并且对噪声敏感; RL仅需要奖励的规范,并且对噪声是强大的,但效率低下,不容易提供外部知识。我们提出了一种综合方法,将高级计划与RL结合在一起,保留可解释性,转移和效率,同时允许对低级计划行动进行强有力的学习。我们的方法通过在AI计划问题的状态过渡模型与Markov决策过程(MDP)的抽象状态过渡系统(MDP)之间建立对应关系,从而定义了AIP操作员的分层增强学习(HRL)的选项。通过添加内在奖励来鼓励MDP和AIP过渡模型之间的一致性来学习选项。我们通过比较Minigrid和N房间环境中RL和HRL算法的性能来证明我们的综合方法的好处,从而显示了我们方法比现有方法的优势。
translated by 谷歌翻译