我们显示了基于最坏情况的晶格问题(例如,近似多项式因子中的最短载体),在不当模型中学习不当学习的半空间的硬度。特别是,我们表明,在此假设下,没有有效的算法可以输出任何二元假设,不一定是半空间,即使最佳错误分类误差也一样小,即使最佳错误分类误差也一样,也比$ \ frac 1 2- \ epsilon $更好地实现错误分类误差。小为$ \ delta $。在这里,$ \ epsilon $可以小于尺寸中任何多项式的倒数,而$ \ delta $则小于$ \ mathrm {exp} \ left( - \ omega \ left(\ log^{1-c})(\ log^{1-c}( d)\ right)\ right)$,其中$ 0 <c <1 $是任意常数,$ d $是尺寸。此问题的先前硬度结果[Daniely16]基于平均案例复杂性假设,特别是Feige随机3SAT假设的变体。我们的工作为基于最坏情况的复杂性假设提供了这个问题的第一个硬度。它的灵感来自最近的一系列作品,显示出基于最坏情况的晶格问题学习良好的高斯混合物的硬度。
translated by 谷歌翻译
我们显示出与错误(LWE)问题的经典学习之间的直接和概念上的简单减少,其连续类似物(Bruna,Regev,Song and Tang,STOC 2021)。这使我们能够将基于LWE的密码学的强大机械带到Clwe的应用中。例如,我们在GAP最短矢量问题的经典最坏情况下获得了Clwe的硬度。以前,这仅在晶格问题的量子最坏情况下才知道。更广泛地说,随着我们在两个问题之间的减少,LWE的未来发展也将适用于CLWE及其下游应用程序。作为一种具体的应用,我们显示了高斯混合物密度估计的硬度结果改善。在此计算问题中,给定样品访问高斯人的混合物,目标是输出估计混合物密度函数的函数。在经典LWE问题的(合理且被广泛相信的)指数硬度下,我们表明高斯混合物密度估计$ \ Mathbb {r}^n $,大约$ \ log n $ gaussian组件给定$ \ mathsf {poly}(poly}(poly}(poly})) n)$样品需要$ n $的时间准分线性。在LWE的(保守)多项式硬度下,我们显示出$ n^{\ epsilon} $高斯的密度估计,对于任何常数$ \ epsilon> 0 $,它可以改善Bruna,Regev,Song和Tang(Stoc 2021) ,在多项式(量子)硬度假设下,他们至少以$ \ sqrt {n} $高斯的表现表现出硬度。我们的关键技术工具是从古典LWE到LWE的缩短,并使用$ k $ -sparse Secrets,其中噪声的乘法增加仅为$ o(\ sqrt {k})$,与环境尺寸$ n $无关。
translated by 谷歌翻译
我们研究了Massart噪声存在下PAC学习半空间的复杂性。在这个问题中,我们得到了I.I.D.标记的示例$(\ mathbf {x},y)\ in \ mathbb {r}^n \ times \ {\ pm 1 \} $,其中$ \ mathbf {x} $的分布是任意的,标签$ y y y y y y。 $是$ f(\ mathbf {x})$的MassArt损坏,对于未知的半空间$ f:\ mathbb {r}^n \ to \ to \ {\ pm 1 \} $,带有翻转概率$ \ eta(\ eta)(\ eta) Mathbf {x})\ leq \ eta <1/2 $。学习者的目的是计算一个小于0-1误差的假设。我们的主要结果是该学习问题的第一个计算硬度结果。具体而言,假设学习错误(LWE)问题(LWE)问题的(被认为是广泛的)超指定时间硬度,我们表明,即使最佳,也没有多项式时间MassArt Halfspace学习者可以更好地达到错误的错误,即使是最佳0-1错误很小,即$ \ mathrm {opt} = 2^{ - \ log^{c}(n)} $对于任何通用常数$ c \ in(0,1)$。先前的工作在统计查询模型中提供了定性上类似的硬度证据。我们的计算硬度结果基本上可以解决Massart Halfspaces的多项式PAC可学习性,这表明对该问题的已知有效学习算法几乎是最好的。
translated by 谷歌翻译
我们研究了Massart噪声的PAC学习半圆的问题。给定标记的样本$(x,y)$从$ \ mathbb {r} ^ {d} ^ {d} \ times \ times \ {\ pm 1 \} $,这样的例子是任意的和标签$ y $ y $ y $ x $是由按萨塔特对手损坏的目标半空间与翻转概率$ \ eta(x)\ leq \ eta \ leq 1/2 $,目标是用小小的假设计算假设错误分类错误。这个问题的最佳已知$ \ mathrm {poly}(d,1 / \ epsilon)$时间算法实现$ \ eta + \ epsilon $的错误,这可能远离$ \ mathrm {opt} +的最佳界限\ epsilon $,$ \ mathrm {opt} = \ mathbf {e} _ {x \ sim d_x} [\ eta(x)] $。虽然已知实现$ \ mathrm {opt} + O(1)$误差需要超级多项式时间在统计查询模型中,但是在已知的上限和下限之间存在大的间隙。在这项工作中,我们基本上表征了统计查询(SQ)模型中Massart HalfSpaces的有效可读性。具体来说,我们表明,在$ \ mathbb {r} ^ d $中没有高效的sq算法用于学习massart halfpaces ^ d $可以比$ \ omega(\ eta)$更好地实现错误,即使$ \ mathrm {opt} = 2 ^ { - - \ log ^ {c}(d)$,适用于任何通用常量$ c \ in(0,1)$。此外,当噪声上限$ \ eta $接近$ 1/2 $时,我们的错误下限变为$ \ eta - o _ {\ eta}(1)$,其中$ o _ {\ eta}(1)$当$ \ eta $接近$ 1/2 $时,术语达到0美元。我们的结果提供了强有力的证据表明,大规模半空间的已知学习算法几乎是最可能的,从而解决学习理论中的长期开放问题。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
我们考虑强大的线性回归模型$ \ boldsymbol {y} = x \ beta^* + \ boldsymbol {\ eta} $,其中一个对手忽略了design $ x \ in \ mathbb {r}^r}^n \ times D } $可以选择$ \ boldsymbol {\ eta} $以损坏所有观测值的(可能消失的)$ \ boldsymbol {y} $以任意方式。最近的工作[DLN+21,DNS21]引入了有效的算法,以持续恢复参数矢量。这些算法至关重要地依赖于设计矩阵非常广泛(如果其列跨度远非任何稀疏矢量,矩阵就可以很好地扩展)。在本文中,我们表明存在一个缺乏良好性的设计矩阵家族,因此从理论上讲,在上述稳健线性回归模型中,参数向量的持续恢复是不可能的。我们进一步研究了随机矩阵的良好表现的平均案例时间复杂性。我们表明,如果观察值的数量在环境维度上是二次的,则可以有效地证明给定的$ n $ by-by-by-by-by-by-d $ d $ d $高斯矩阵是否会很好地扩展。当观察数为$ O(d^2)$时,我们通过显示出相同认证问题的计算硬度的严格证据来补充这一结果。
translated by 谷歌翻译
在这项工作中,我们研究了一个非负矩阵分解的变体,我们希望找到给定输入矩阵的对称分解成稀疏的布尔矩阵。正式说话,给定$ \ mathbf {m} \ in \ mathbb {z} ^ {m \ times m} $,我们想找到$ \ mathbf {w} \ in \ {0,1 \} ^ {m \ times $} $这样$ \ | \ mathbf {m} - \ mathbf {w} \ mathbf {w} ^ \ top \ | _0 $在所有$ \ mathbf {w} $中最小化为$ k $ -parse。这个问题结果表明与恢复线图中的超图以及私人神经网络训练的重建攻击相比密切相关。由于这个问题在最坏的情况下,我们研究了在这些重建攻击的背景下出现的自然平均水平变体:$ \ mathbf {m} = \ mathbf {w} \ mathbf {w} ^ {\ top $ \ mathbf {w} $ \ mathbf {w} $ k $ -parse行的随机布尔矩阵,目标是恢复$ \ mathbf {w} $上列排列。等效,这可以被认为是从其线图中恢复均匀随机的k $ k $。我们的主要结果是基于对$ \ MATHBF {W} $的引导高阶信息的此问题的多项式算法,然后分解适当的张量。我们分析中的关键成分,可能是独立的兴趣,是表示这种矩阵$ \ mathbf {w} $在$ m = \ widetilde {\ omega}(r)时,这一矩阵$ \ mathbf {w} $具有高概率。 $,我们使用Littlewood-Offord理论的工具和二进制Krawtchouk多项式的估算。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
非高斯分量分析(NGCA)是以下分布学习问题:给予I.I.D.来自$ \ mathbb {r} ^ d $的分布上的样本,这是一个隐藏方向的非高斯和一个独立的标准高斯在正交方向上,目标是近似隐藏方向$ v $。先前的工作\ Cite {DKS17-SQ}提供了在单变量非高斯分配$ a $的适当时刻匹配条件下为NGCA提供信息计算权衡的正式证据。当分配$ a $是离散的时,后者的结果不适用。自然问题是信息计算权衡是否持续存在。在本文中,我们通过在规定的技术意义上获得$ a $的规范中的NGCA的样本和计算有效的算法来回答阴性的问题。在算法中利用的关键工具是LATTICE基础减少的LLL方法\ Cite {LLL82}。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
我们建立了最佳的统计查询(SQ)下限,以鲁棒地学习某些离散高维分布的家庭。特别是,我们表明,没有访问$ \ epsilon $ -Cruntupted二进制产品分布的有效SQ算法可以在$ \ ell_2 $ -error $ o(\ epsilon \ sqrt {\ log(\ log(1/\ epsilon))内学习其平均值})$。同样,我们表明,没有访问$ \ epsilon $ - 腐败的铁磁高温岛模型的有效SQ算法可以学习到总变量距离$ O(\ Epsilon \ log(1/\ Epsilon))$。我们的SQ下限符合这些问题已知算法的错误保证,提供证据表明这些任务的当前上限是最好的。在技​​术层面上,我们为离散的高维分布开发了一个通用的SQ下限,从低维矩匹配构建体开始,我们认为这将找到其他应用程序。此外,我们介绍了新的想法,以分析这些矩匹配的结构,以进行离散的单变量分布。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
我们研究有限混合物中学习非参数分布的问题,并在样品复杂性上建立紧密的界限,以学习此类模型中的组件分布。也就是说,我们得到了I.I.D.来自pdf $ f $ whene $$ f = \ sum_ {i = 1}^k w_i f_i,\ quad \ sum_ {i = 1}^k w_i = 1,\ quad w_i> 0 $$的样品在学习每个组件$ f_i $时。没有关于$ f_i $的任何假设,此问题是错误的。为了识别组件$ f_i $,我们假设每个$ f_i $都可以写为高斯的卷积和紧凑的密度密度$ \ nu_i $,带有$ \ text {supp {supp}(\ nu_i)\ cap \ text \ text {supp}(\ nu_j)= \ emptyset $。我们的主要结果表明,$(\ frac {1} {\ varepsilon})^{\ omega(\ log \ log \ log \ frac {1} {\ varepsilon})} $ samples $ samples是估计每个$ f_i $的样本所必需的。与参数混合物不同,难度不是源于$ k $或小重量$ w_i $的订单,并且与非参数密度估计不同,它不是源于维度,不规则性或不均匀性的诅咒。证明依赖于与高斯人的近似值的快速率,这可能是独立的。要证明这很紧,我们还提出了一种算法,该算法使用$(\ frac {1} {\ varepsilon})^{o(\ log \ log \ log \ frac {1} {\ varepsilon} {\ varepsilon}} $ sample f_i $。与基于力矩匹配和张量方法学习潜在变量模型的现有方法不同,我们的证明涉及通过正交功能对不良条件线性系统进行微妙的分析。结合了这些界限,我们得出结论,该问题的最佳样本复杂性正确在于多项式和指数之间,这在学习理论中并不常见。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们重新审视量子状态认证的基本问题:给定混合状态$ \ rho \中的副本\ mathbb {c} ^ {d \ times d} $和混合状态$ \ sigma $的描述,决定是否$ \ sigma = \ rho $或$ \ | \ sigma - \ rho \ | _ {\ mathsf {tr}} \ ge \ epsilon $。当$ \ sigma $最大化时,这是混合性测试,众所周知,$ \ omega(d ^ {\ theta(1)} / \ epsilon ^ 2)$副本是必要的,所以确切的指数取决于测量类型学习者可以使[OW15,BCL20],并且在许多这些设置中,有一个匹配的上限[OW15,Bow19,BCL20]。可以避免这种$ d ^ {\ theta(1)} $依赖于某些类型的混合状态$ \ sigma $,例如。大约低等级的人?更常见地,是否存在一个简单的功能$ f:\ mathbb {c} ^ {d \ times d} \ to \ mathbb {r} _ {\ ge 0} $,其中一个人可以显示$ \ theta(f( \ sigma)/ \ epsilon ^ 2)$副本是必要的,并且足以就任何$ \ sigma $的国家认证?这种实例 - 最佳边界在经典分布测试的背景下是已知的,例如, [VV17]。在这里,我们为量子设置提供了这个性质的第一个界限,显示(达到日志因子),即使用非接受不连贯测量的状态认证的复杂性复杂性基本上是通过复制复杂性进行诸如$ \ sigma $之间的保真度的复杂性。和最大混合的状态。令人惊讶的是,我们的界限与经典问题的实例基本上不同,展示了两个设置之间的定性差异。
translated by 谷歌翻译