重要性采样(IS)是一种强大的蒙特卡洛(MC)方法,用于近似积分,例如在贝叶斯推论的背景下。在IS中,从所谓的提案分布中模拟样品,并且该提案的选择是实现高性能的关键。在自适应IS(AIS)方法中,一组建议是迭代改进的。 AIS是一种相关和及时的方法论,尽管仍有许多局限性尚待克服,例如,高维和多模式问题的维度诅咒。此外,汉密尔顿蒙特卡洛(HMC)算法在机器学习和统计数据中变得越来越流行。 HMC具有几个吸引人的特征,例如其探索性行为,尤其是在其他方法遭受的情况下,尤其是在高维目标中。在本文中,我们介绍了新型的汉密尔顿自适应重要性采样(HAIS)方法。 Hais使用平行的HMC链实现了两步自适应过程,每次迭代都合作。拟议的HAI有效地适应了一系列建议,从而提取了HMC的优势。 HAI可以理解为具有额外重采样步骤的通用分层AIS家族的特定实例。 HAIS在高维问题W.R.T.方面取得了重大的绩效提高。最先进的算法。我们讨论了HAI的统计特性,并在两个具有挑战性的例子中显示了其高性能。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
我们分析了优化的自适应重视采样器(OAI),以便与一般提案进行Monte Carlo集成。我们利用了一个经典的结果,该结果表明,具有$ \ chi ^ 2 $的重要性采样量表的偏差和平均平方误差(MSE) - 在目标和提案之间以及开发一个执行全球优化$的方案\ chi ^ 2 $ - 程度。虽然众所周知,这一数量是指数家庭建议的凸,但一般提案的情况一直是一个公开问题。我们利用随机梯度Langevin动态(SGLD)及其已被推迟的对应于$ \ Chi ^ 2 $的全球优化的损失对手,通过利用非凸优化文献的最近结果来实现MSE的,并为MSE获得巨大的界限。由此产生的AIS方案在迭代次数中具有明确的理论保证。
translated by 谷歌翻译
重要性采样(IS)是一种使用来自建议分布和相关重要性权重的独立样本在目标分布下近似期望的方法。在许多应用中,只有直到归一化常数才知道目标分布,在这种情况下,可以使用自称为(SNIS)。虽然自我正态化的使用可能会对估计量的分散产生积极影响,但它引入了偏见。在这项工作中,我们提出了一种新方法BR-SNIS,其复杂性与SNI的复杂性基本相同,并且显着降低了偏见而不增加差异。这种方法是一种包装器,从某种意义上说,它使用了与SNIS相同的建议样本和重要性权重,但巧妙地使用了迭代采样(ISIR)重新采样(ISIR)来形成估算器的偏置版本。我们为提出的算法提供了严格的理论结果,包括新的偏见,方差和高概率界限,这些算法由数值示例进行了说明。
translated by 谷歌翻译
汉密尔顿蒙特卡罗(HMC)方法广泛用于利用高效率和良好的空间尺寸的效率和良好可扩展性,将样品从非正式化的目标密度绘制。然而,当目标分布是多式化的时,HMC奋斗,因为沿着模拟路径的势能函数(即负面日志密度函数)的最大增加是由初始动能的界限,这遵循$ \ Chi_d的一半^ 2 $分布,其中d是空间尺寸。在本文中,我们开发了一个汉密尔顿蒙特卡罗方法,其中构造的路径可以穿过高潜在的能量屏障。该方法不需要预先知道目标分布的模式。我们的方法通过连续改变模拟粒子的质量而在构造哈密顿路径时,我们的方法能够频繁跳跃。因此,该方法可以被认为是HMC和钢化转变方法的组合。与其他回火方法相比,我们的方法在GIBBS采样器设置中具有独特的优势,其中目标分布在每个步骤中发生变化。我们为我们的方法制定了实用的调整策略,并证明它可以使用法线和传感器网络定位问题的混合物来构建靶向高维的Markov链的全局混合马尔可夫链。
translated by 谷歌翻译
它已被广泛记录说粒子过滤器中的采样和重采样步骤不能差异化。介绍{\ itshape Reparameterisisisisisation技巧}以允许采样步骤重新重整为可微分功能。我们扩展{\ itshape Reparameterisisisation Trick}以包括重采样的随机输入,因此在此步骤之后限制了梯度计算中的不连续性。了解先前和可能性的梯度允许我们运行粒子马尔可夫链蒙特卡罗(P-MCMC)并在估算参数时使用No-U转样采样器(螺母)作为提案。我们将大都市调整后的Langevin算法(MALA)进行比较,汉密尔顿蒙特卡罗与不同数量的步骤和坚果。我们考虑两个状态空间模型,并表明坚果改善了马尔可夫链的混合,可以在较少的计算时间内产生更准确的结果。
translated by 谷歌翻译
我们开发了一个探索漏洞利用马尔可夫链Monte Carlo算法($ \ OperatorName {ex ^ 2mcmc} $),它结合了多个全局提议和本地移动。所提出的方法是巨大的平行化和极其计算的高效。我们证明$ \ operatorname {ex ^ 2mcmc} $下的$ v $ v $ -unique几何ergodicity在现实条件下,并计算混合速率的显式界限,显示多个全局移动带来的改进。我们展示$ \ operatorname {ex ^ 2mcmc} $允许通过提出依赖全局移动的新方法进行微调剥削(本地移动)和探索(全球移动)。最后,我们开发了一个自适应方案,$ \ OperatorName {Flex ^ 2mcmc} $,它学习使用归一化流的全局动作的分布。我们说明了许多经典采样基准测试的$ \ OperatorName {ex ^ 2mccmc} $及其自适应版本的效率。我们还表明,这些算法提高了对基于能量的模型的抽样GAN的质量。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps informed by first-order gradient information. These features allow it to converge to high-dimensional target distributions much more quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However, HMC's performance is highly sensitive to two user-specified parameters: a step size and a desired number of steps L. In particular, if L is too small then the algorithm exhibits undesirable random walk behavior, while if L is too large the algorithm wastes computation. We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the need to set a number of steps L. NUTS uses a recursive algorithm to build a set of likely candidate points that spans a wide swath of the target distribution, stopping automatically when it starts to double back and retrace its steps. Empirically, NUTS perform at least as efficiently as and sometimes more efficiently than a well tuned standard HMC method, without requiring user intervention or costly tuning runs. We also derive a method for adapting the step size parameter on the fly based on primal-dual averaging. NUTS can thus be used with no hand-tuning at all. NUTS is also suitable for applications such as BUGS-style automatic inference engines that require efficient "turnkey" sampling algorithms.
translated by 谷歌翻译
我们提出了CKAM,周期性内核自适应大都市,该大都市结合了一个周期性的步骤尺寸方案,以控制探索和采样。我们表明,在精心设计的双峰分布中,现有的自适应大都市类型算法将无法融合到真正的后验分布。我们指出,这是因为自适应采样器使用链的过去历史估算局部/全局协方差结构,这将导致自适应算法被困在局部模式下。我们证明CKAM鼓励对后验分布进行探索,并使采样器能够从局部模式中逃脱,同时保持自适应方法的高性能。
translated by 谷歌翻译
颗粒滤波方法广泛应用于非线性非高斯状态空间模型内的顺序状态估计。然而,传统的颗粒过滤方法在高维状态空间模型中遭受重量退化。目前,有许多方法可以提高高维状态空间模型中粒子滤波的性能。其中,更先进的方法是通过实施复合Metropolis-Hasting(MH)内核来构建顺序Makov Chian Monte Carlo(SMCMC)框架。在本文中,我们提出了离散的示出ZAG采样器,并在SMCMC框架内的复合MH内核的细化阶段应用Zig-Zag采样器,其在联合拉伸阶段中的可逆颗粒流动实现。通过挑战复杂的高维过滤实施例的数值实验,我们评估所提出的方法的性能。无限的实验表明,在高维状态估计例中,所提出的方法提高了估计精度并增加了与最先进的过滤方法相比的接收比率。
translated by 谷歌翻译
我们研究Livingstone&Zanella(2021)中引入的一阶级本地平衡的大都市 - 黑斯廷斯算法(2021)。要在类中选择特定算法,用户必须选择平衡函数$ g:\ mathbb {r} \ to \ mathbb {r} $满足$ g(t)= tg(1 / t)$,以及噪声分布提案增量。课程中的流行选择是Metropolis调整的Langevin算法,最近推出的Barker提案。我们首先建立一个普遍限制的最佳验收率为57%,并为N $ N $的缩放,因为维度在$ G $的温和平滑假设下的所有成员之间的无限程度倾向于无限算法的目标分布是产品形式。特别地,我们通过预期的平方跳跃距离来获得类中任意算法的渐近效率的显式表达式。然后,我们考虑如何在各种约束下优化此表达式。我们为Barker提案提供了最佳的噪声分布选择,在高斯噪声分布​​下的平衡功能的最佳选择,以及整个类中的一阶本地平衡算法的最佳选择,结果取决于特定的目标分布。数值模拟确认了我们的理论发现,特别表明,Barker提案中的双模噪声分布选择产生了比原始高斯版本始终如一的效率的实用算法。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
我们提出了连续重复的退火流传输蒙特卡洛(CRAFT),该方法结合了顺序的蒙特卡洛(SMC)采样器(本身是退火重要性采样的概括)与使用归一化流量的变异推断。直接训练了归一化的流量,可用于使用KL差异进行每个过渡,以在退火温度之间运输。使用归一化流/SMC近似值估算了此优化目标。我们从概念上展示并使用多个经验示例,这些示例可以改善退火流运输蒙特卡洛(Arbel等,2021),并在其上建造,也可以在基于马尔可夫链蒙特卡洛(MCMC)基于基于的随机归一化流(Wu等人。2020)。通过将工艺纳入粒子MCMC中,我们表明,这种学识渊博的采样器可以在具有挑战性的晶格场理论示例中获得令人印象深刻的准确结果。
translated by 谷歌翻译
在这项工作中,我们考虑了对具有非负LEBESGUE密度的概率度量的预期估计,并且是最新的正常化常数。我们专注于通过失业不足的Langevin Dynamics开发一种无偏见的方法,由于统计和机器学习的应用,事实证明,该动态已被证明很受欢迎。特别是连续时间,可以构建动力学以承认感兴趣的概率作为固定度量。我们基于双随机估计而开发了一种新颖的方案,该方案仅需要访问动力学的时间限制版本,并且是实用算法中使用的动力学版本。我们证明,根据标准假设,我们的估计器具有有限的差异,并且具有有限的预期成本,或者具有有限的成本具有很高的可能性。为了说明我们的理论发现,我们提供了验证我们理论的数值实验,其中包括贝叶斯统计和统计物理学的挑战示例。
translated by 谷歌翻译
在这项工作中,我们分析了嘈杂的重要抽样(IS),即,正在使用对目标密度的嘈杂评估。我们展示了一般框架,并获得最佳建议密度为噪音是估算。最佳建议包含嘈杂的实现方差的信息,提出噪声功率更高的区域中的点。我们还比较使用最佳提案与以前在嘈杂中考虑的最佳最优方法是框架。
translated by 谷歌翻译
最近介绍基于梯度的MCMC用于离散空间具有巨大的希望,并带来了新离散的可能性的诱人可能性,即MALA和HMC等著名的连续方法。为了实现这一目标,我们介绍了几个在概念上受到MALA启发的分离大都会杂货样本,并在贝叶斯推理和基于能量的建模中表现出了一系列具有挑战性的采样问题。从方法上讲,我们确定了为什么对预处理的MALA的离散类似物通常是棘手的,激发了我们基于辅助变量和“高斯整体技巧”引入一种新型的预处理。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
从观察到的调查数据中,宇宙学的正向建模方法使在宇宙开头重建初始条件成为可能。但是,参数空间的高维度仍然构成挑战,探索完整的后部,传统算法(例如汉密尔顿蒙特卡洛(HMC))由于产生相关样本而在计算上效率低下发散(损失)功能。在这里,我们开发了一种称为变异自动采样(VBS)的混合方案,以通过学习用于蒙特卡洛采样的建议分布的变异近似来减轻这两种算法的缺点,并将其与HMC结合。变异分布被参数化为正常化的流量,并通过即时生成的样品学习,而从中提取的建议则减少了MCMC链中的自动相关长度。我们的归一化流程使用傅立叶空间卷积和元素的操作来扩展到高维度。我们表明,经过短暂的初始热身和训练阶段,VBS比简单的VI方法产生了更好的样品质量,并将采样阶段的相关长度缩短了10-50倍,仅使用HMC探索初始的后验64 $^3 $和128 $^3 $维度问题的条件,高信噪比数据观察的收益较大。
translated by 谷歌翻译