汉密尔顿蒙特卡罗(HMC)方法广泛用于利用高效率和良好的空间尺寸的效率和良好可扩展性,将样品从非正式化的目标密度绘制。然而,当目标分布是多式化的时,HMC奋斗,因为沿着模拟路径的势能函数(即负面日志密度函数)的最大增加是由初始动能的界限,这遵循$ \ Chi_d的一半^ 2 $分布,其中d是空间尺寸。在本文中,我们开发了一个汉密尔顿蒙特卡罗方法,其中构造的路径可以穿过高潜在的能量屏障。该方法不需要预先知道目标分布的模式。我们的方法通过连续改变模拟粒子的质量而在构造哈密顿路径时,我们的方法能够频繁跳跃。因此,该方法可以被认为是HMC和钢化转变方法的组合。与其他回火方法相比,我们的方法在GIBBS采样器设置中具有独特的优势,其中目标分布在每个步骤中发生变化。我们为我们的方法制定了实用的调整策略,并证明它可以使用法线和传感器网络定位问题的混合物来构建靶向高维的Markov链的全局混合马尔可夫链。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps informed by first-order gradient information. These features allow it to converge to high-dimensional target distributions much more quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However, HMC's performance is highly sensitive to two user-specified parameters: a step size and a desired number of steps L. In particular, if L is too small then the algorithm exhibits undesirable random walk behavior, while if L is too large the algorithm wastes computation. We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the need to set a number of steps L. NUTS uses a recursive algorithm to build a set of likely candidate points that spans a wide swath of the target distribution, stopping automatically when it starts to double back and retrace its steps. Empirically, NUTS perform at least as efficiently as and sometimes more efficiently than a well tuned standard HMC method, without requiring user intervention or costly tuning runs. We also derive a method for adapting the step size parameter on the fly based on primal-dual averaging. NUTS can thus be used with no hand-tuning at all. NUTS is also suitable for applications such as BUGS-style automatic inference engines that require efficient "turnkey" sampling algorithms.
translated by 谷歌翻译
采样约束连续分布的问题经常出现在许多机器/统计学习模型中。许多Monte Carlo Markov链(MCMC)采样方法已适应以处理随机变量的不同类型的约束。在这些方法中,与其他对应物相比,汉密尔顿蒙特卡洛(HMC)和相关方法在计算效率方面具有显着优势。在本文中,我们首先回顾了HMC和一些扩展的抽样方法,然后具体解释了三种受约束的基于HMC的采样方法,反射,重新制定和球形HMC。为了说明,我们应用这些方法来解决三个众所周知的约束采样问题,截断的多元正常分布,贝叶斯正则回归和非参数密度估计。在这篇综述中,我们还将约束的采样与受约束设计空间的实验的统计设计中的另一个类似问题联系起来。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
当采样贝叶斯推断时,一种流行的方法是使用汉密尔顿蒙特卡洛(HMC),特别是No-U-Turn采样器(NUTS),该采样器(NUTS)自动决定汉密尔顿轨迹的结束时间。但是,HMC和螺母可能需要众多目标密度的数值梯度,并且在实践中可能会缓慢。我们建议使用HMC和坚果解决贝叶斯推理问题的汉密尔顿神经网络(HNNS)。一旦训练,HNN不需要在采样过程中的目标密度的数值梯度。此外,它们满足了重要的特性,例如完美的时间可逆性和哈密顿保护性,使其非常适合在HMC和坚果中使用,因为可以显示平稳性。我们还提出了一个称为潜在HNN(L-HNN)的HNN扩展,该扩展能够预测潜在的可变输出。与HNN相比,L-HNN提供了提高表达性和减少的集成误差。最后,我们在具有在线错误监测方案的螺母中使用L-HNN,以防止低概率密度区域的样本退化。我们证明了在螺母中的L-HNN,并在线错误监视了一些涉及复杂,重尾和高本地狂热概率密度的示例。总体而言,具有在线错误监控的坚果中的L-HNN令人满意地推断了这些概率密度。与传统的螺母相比,在线错误监控的螺母中,L-HNN需要1--2个目标密度的数值梯度,并通过数量级提高了每个梯度的有效样本量(ESS)。
translated by 谷歌翻译
它已被广泛记录说粒子过滤器中的采样和重采样步骤不能差异化。介绍{\ itshape Reparameterisisisisisation技巧}以允许采样步骤重新重整为可微分功能。我们扩展{\ itshape Reparameterisisisation Trick}以包括重采样的随机输入,因此在此步骤之后限制了梯度计算中的不连续性。了解先前和可能性的梯度允许我们运行粒子马尔可夫链蒙特卡罗(P-MCMC)并在估算参数时使用No-U转样采样器(螺母)作为提案。我们将大都市调整后的Langevin算法(MALA)进行比较,汉密尔顿蒙特卡罗与不同数量的步骤和坚果。我们考虑两个状态空间模型,并表明坚果改善了马尔可夫链的混合,可以在较少的计算时间内产生更准确的结果。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
在本文中,我们描述了使用汉密尔顿蒙特卡洛方法从基于经验可能性的后验进行采样的{\ tt r}软件包。基于经验可能性的方法论已在最近的许多感兴趣问题的贝叶斯建模中使用。该半摩擦过程可以轻松地将非参数分布估计器的灵活性与参数模型的可解释性结合在一起。该模型是通过估计基于方程的约束来指定的。从贝叶斯的经验可能性(贝耶斯)后部提取推断是具有挑战性的。可能性是数值计算的,因此不存在后部的闭合表达。此外,对于任何有限尺寸的样本,可能性的支持是非凸,这阻碍了许多马尔可夫链蒙特卡洛(MCMC)程序的快速混合。最近已经表明,使用对数经验可能性梯度的性质,可以设计有效的汉密尔顿蒙特卡洛(HMC)算法来从贝内斯尔后部采样。该软件包要求用户仅指定估计方程,先验及其各自的梯度。从参数后部绘制的MCMC样本,并获得了用户所需的各种细节。
translated by 谷歌翻译
重要性采样(IS)是一种强大的蒙特卡洛(MC)方法,用于近似积分,例如在贝叶斯推论的背景下。在IS中,从所谓的提案分布中模拟样品,并且该提案的选择是实现高性能的关键。在自适应IS(AIS)方法中,一组建议是迭代改进的。 AIS是一种相关和及时的方法论,尽管仍有许多局限性尚待克服,例如,高维和多模式问题的维度诅咒。此外,汉密尔顿蒙特卡洛(HMC)算法在机器学习和统计数据中变得越来越流行。 HMC具有几个吸引人的特征,例如其探索性行为,尤其是在其他方法遭受的情况下,尤其是在高维目标中。在本文中,我们介绍了新型的汉密尔顿自适应重要性采样(HAIS)方法。 Hais使用平行的HMC链实现了两步自适应过程,每次迭代都合作。拟议的HAI有效地适应了一系列建议,从而提取了HMC的优势。 HAI可以理解为具有额外重采样步骤的通用分层AIS家族的特定实例。 HAIS在高维问题W.R.T.方面取得了重大的绩效提高。最先进的算法。我们讨论了HAI的统计特性,并在两个具有挑战性的例子中显示了其高性能。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
贝叶斯推理允许在贝叶斯神经网络的上下文中获取有关模型参数的有用信息,或者在贝叶斯神经网络的背景下。通常的Monte Carlo方法的计算成本,用于在贝叶斯推理中对贝叶斯推理的后验法律进行线性点的数量与数据点的数量进行线性。将其降低到这一成本的一小部分的一种选择是使用Langevin动态的未经调整的离散化来诉诸Mini-Batching,在这种情况下,只使用数据的随机分数来估计梯度。然而,这导致动态中的额外噪声,因此在马尔可夫链采样的不变度量上的偏差。我们倡导使用所谓的自适应Langevin动态,这是一种改进标准惯性Langevin动态,其动态摩擦力,可自动校正迷你批次引起的增加的噪声。我们调查假设适应性Langevin的假设(恒定协方差估计梯度的恒定协方差),这在贝叶斯推理的典型模型中不满足,并在这种情况下量化小型匹配诱导的偏差。我们还展示了如何扩展ADL,以便通过考虑根据参数的当前值来系统地减少后部分布的偏置。
translated by 谷歌翻译
从卫星图像中提取的大气运动向量(AMV)是唯一具有良好全球覆盖范围的风观测。它们是进食数值天气预测(NWP)模型的重要特征。已经提出了几种贝叶斯模型来估计AMV。尽管对于正确同化NWP模型至关重要,但很少有方法可以彻底表征估计误差。估计误差的困难源于后验分布的特异性,这既是很高的维度,又是由于奇异的可能性而导致高度不良的条件,这在缺少数据(未观察到的像素)的情况下特别重要。这项工作研究了使用基于梯度的Markov链Monte Carlo(MCMC)算法评估AMV的预期误差。我们的主要贡献是提出一种回火策略,这相当于在点估计值附近的AMV和图像变量的联合后验分布的局部近似。此外,我们提供了与先前家庭本身有关的协方差(分数布朗运动),并具有不同的超参数。从理论的角度来看,我们表明,在规律性假设下,随着温度降低到{optimal}高斯近似值,在最大a后验(MAP)对数密度给出的点估计下,温度降低到{optimal}高斯近似值。从经验的角度来看,我们根据一些定量的贝叶斯评估标准评估了提出的方法。我们对合成和真实气象数据进行的数值模拟揭示了AMV点估计的准确性及其相关的预期误差估计值的显着提高,但在MCMC算法的收敛速度方面也有很大的加速度。
translated by 谷歌翻译
We consider the problem of estimating the interacting neighborhood of a Markov Random Field model with finite support and homogeneous pairwise interactions based on relative positions of a two-dimensional lattice. Using a Bayesian framework, we propose a Reversible Jump Monte Carlo Markov Chain algorithm that jumps across subsets of a maximal range neighborhood, allowing us to perform model selection based on a marginal pseudoposterior distribution of models. To show the strength of our proposed methodology we perform a simulation study and apply it to a real dataset from a discrete texture image analysis.
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译
在随机抽样方法中,马尔可夫链蒙特卡洛算法是最重要的。在随机行走都市方案中,我们利用分析方法和数值方法的结合研究了它们的收敛性能。我们表明,偏离目标稳态分布的偏差特征是定位过渡的函数,这是定义随机步行的尝试跳跃的特征长度。该过渡大大改变了误差,而误差是通过不完整的收敛引入的,并区分了两个方案,其中弛豫机制分别受扩散和排斥分别受到限制。
translated by 谷歌翻译
我们开发了一个探索漏洞利用马尔可夫链Monte Carlo算法($ \ OperatorName {ex ^ 2mcmc} $),它结合了多个全局提议和本地移动。所提出的方法是巨大的平行化和极其计算的高效。我们证明$ \ operatorname {ex ^ 2mcmc} $下的$ v $ v $ -unique几何ergodicity在现实条件下,并计算混合速率的显式界限,显示多个全局移动带来的改进。我们展示$ \ operatorname {ex ^ 2mcmc} $允许通过提出依赖全局移动的新方法进行微调剥削(本地移动)和探索(全球移动)。最后,我们开发了一个自适应方案,$ \ OperatorName {Flex ^ 2mcmc} $,它学习使用归一化流的全局动作的分布。我们说明了许多经典采样基准测试的$ \ OperatorName {ex ^ 2mccmc} $及其自适应版本的效率。我们还表明,这些算法提高了对基于能量的模型的抽样GAN的质量。
translated by 谷歌翻译
颗粒滤波方法广泛应用于非线性非高斯状态空间模型内的顺序状态估计。然而,传统的颗粒过滤方法在高维状态空间模型中遭受重量退化。目前,有许多方法可以提高高维状态空间模型中粒子滤波的性能。其中,更先进的方法是通过实施复合Metropolis-Hasting(MH)内核来构建顺序Makov Chian Monte Carlo(SMCMC)框架。在本文中,我们提出了离散的示出ZAG采样器,并在SMCMC框架内的复合MH内核的细化阶段应用Zig-Zag采样器,其在联合拉伸阶段中的可逆颗粒流动实现。通过挑战复杂的高维过滤实施例的数值实验,我们评估所提出的方法的性能。无限的实验表明,在高维状态估计例中,所提出的方法提高了估计精度并增加了与最先进的过滤方法相比的接收比率。
translated by 谷歌翻译