Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps informed by first-order gradient information. These features allow it to converge to high-dimensional target distributions much more quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However, HMC's performance is highly sensitive to two user-specified parameters: a step size and a desired number of steps L. In particular, if L is too small then the algorithm exhibits undesirable random walk behavior, while if L is too large the algorithm wastes computation. We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the need to set a number of steps L. NUTS uses a recursive algorithm to build a set of likely candidate points that spans a wide swath of the target distribution, stopping automatically when it starts to double back and retrace its steps. Empirically, NUTS perform at least as efficiently as and sometimes more efficiently than a well tuned standard HMC method, without requiring user intervention or costly tuning runs. We also derive a method for adapting the step size parameter on the fly based on primal-dual averaging. NUTS can thus be used with no hand-tuning at all. NUTS is also suitable for applications such as BUGS-style automatic inference engines that require efficient "turnkey" sampling algorithms.
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
当采样贝叶斯推断时,一种流行的方法是使用汉密尔顿蒙特卡洛(HMC),特别是No-U-Turn采样器(NUTS),该采样器(NUTS)自动决定汉密尔顿轨迹的结束时间。但是,HMC和螺母可能需要众多目标密度的数值梯度,并且在实践中可能会缓慢。我们建议使用HMC和坚果解决贝叶斯推理问题的汉密尔顿神经网络(HNNS)。一旦训练,HNN不需要在采样过程中的目标密度的数值梯度。此外,它们满足了重要的特性,例如完美的时间可逆性和哈密顿保护性,使其非常适合在HMC和坚果中使用,因为可以显示平稳性。我们还提出了一个称为潜在HNN(L-HNN)的HNN扩展,该扩展能够预测潜在的可变输出。与HNN相比,L-HNN提供了提高表达性和减少的集成误差。最后,我们在具有在线错误监测方案的螺母中使用L-HNN,以防止低概率密度区域的样本退化。我们证明了在螺母中的L-HNN,并在线错误监视了一些涉及复杂,重尾和高本地狂热概率密度的示例。总体而言,具有在线错误监控的坚果中的L-HNN令人满意地推断了这些概率密度。与传统的螺母相比,在线错误监控的螺母中,L-HNN需要1--2个目标密度的数值梯度,并通过数量级提高了每个梯度的有效样本量(ESS)。
translated by 谷歌翻译
汉密尔顿蒙特卡罗(HMC)方法广泛用于利用高效率和良好的空间尺寸的效率和良好可扩展性,将样品从非正式化的目标密度绘制。然而,当目标分布是多式化的时,HMC奋斗,因为沿着模拟路径的势能函数(即负面日志密度函数)的最大增加是由初始动能的界限,这遵循$ \ Chi_d的一半^ 2 $分布,其中d是空间尺寸。在本文中,我们开发了一个汉密尔顿蒙特卡罗方法,其中构造的路径可以穿过高潜在的能量屏障。该方法不需要预先知道目标分布的模式。我们的方法通过连续改变模拟粒子的质量而在构造哈密顿路径时,我们的方法能够频繁跳跃。因此,该方法可以被认为是HMC和钢化转变方法的组合。与其他回火方法相比,我们的方法在GIBBS采样器设置中具有独特的优势,其中目标分布在每个步骤中发生变化。我们为我们的方法制定了实用的调整策略,并证明它可以使用法线和传感器网络定位问题的混合物来构建靶向高维的Markov链的全局混合马尔可夫链。
translated by 谷歌翻译
它已被广泛记录说粒子过滤器中的采样和重采样步骤不能差异化。介绍{\ itshape Reparameterisisisisisation技巧}以允许采样步骤重新重整为可微分功能。我们扩展{\ itshape Reparameterisisisation Trick}以包括重采样的随机输入,因此在此步骤之后限制了梯度计算中的不连续性。了解先前和可能性的梯度允许我们运行粒子马尔可夫链蒙特卡罗(P-MCMC)并在估算参数时使用No-U转样采样器(螺母)作为提案。我们将大都市调整后的Langevin算法(MALA)进行比较,汉密尔顿蒙特卡罗与不同数量的步骤和坚果。我们考虑两个状态空间模型,并表明坚果改善了马尔可夫链的混合,可以在较少的计算时间内产生更准确的结果。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
在本文中,我们描述了使用汉密尔顿蒙特卡洛方法从基于经验可能性的后验进行采样的{\ tt r}软件包。基于经验可能性的方法论已在最近的许多感兴趣问题的贝叶斯建模中使用。该半摩擦过程可以轻松地将非参数分布估计器的灵活性与参数模型的可解释性结合在一起。该模型是通过估计基于方程的约束来指定的。从贝叶斯的经验可能性(贝耶斯)后部提取推断是具有挑战性的。可能性是数值计算的,因此不存在后部的闭合表达。此外,对于任何有限尺寸的样本,可能性的支持是非凸,这阻碍了许多马尔可夫链蒙特卡洛(MCMC)程序的快速混合。最近已经表明,使用对数经验可能性梯度的性质,可以设计有效的汉密尔顿蒙特卡洛(HMC)算法来从贝内斯尔后部采样。该软件包要求用户仅指定估计方程,先验及其各自的梯度。从参数后部绘制的MCMC样本,并获得了用户所需的各种细节。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
最近介绍基于梯度的MCMC用于离散空间具有巨大的希望,并带来了新离散的可能性的诱人可能性,即MALA和HMC等著名的连续方法。为了实现这一目标,我们介绍了几个在概念上受到MALA启发的分离大都会杂货样本,并在贝叶斯推理和基于能量的建模中表现出了一系列具有挑战性的采样问题。从方法上讲,我们确定了为什么对预处理的MALA的离散类似物通常是棘手的,激发了我们基于辅助变量和“高斯整体技巧”引入一种新型的预处理。
translated by 谷歌翻译
从观察到的调查数据中,宇宙学的正向建模方法使在宇宙开头重建初始条件成为可能。但是,参数空间的高维度仍然构成挑战,探索完整的后部,传统算法(例如汉密尔顿蒙特卡洛(HMC))由于产生相关样本而在计算上效率低下发散(损失)功能。在这里,我们开发了一种称为变异自动采样(VBS)的混合方案,以通过学习用于蒙特卡洛采样的建议分布的变异近似来减轻这两种算法的缺点,并将其与HMC结合。变异分布被参数化为正常化的流量,并通过即时生成的样品学习,而从中提取的建议则减少了MCMC链中的自动相关长度。我们的归一化流程使用傅立叶空间卷积和元素的操作来扩展到高维度。我们表明,经过短暂的初始热身和训练阶段,VBS比简单的VI方法产生了更好的样品质量,并将采样阶段的相关长度缩短了10-50倍,仅使用HMC探索初始的后验64 $^3 $和128 $^3 $维度问题的条件,高信噪比数据观察的收益较大。
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译
重要的加权是调整蒙特卡洛集成以说明错误分布中抽取的一种一般方法,但是当重要性比的右尾巴较重时,最终的估计值可能是高度可变的。当目标分布的某些方面无法通过近似分布捕获,在这种情况下,可以通过修改极端重要性比率来获得更稳定的估计。我们提出了一种新的方法,该方法使用拟合模拟重要性比率的上尾的广义帕累托分布来稳定重要性权重。该方法在经验上的性能要比现有方法稳定重要性采样估计值更好,包括稳定的有效样本量估计,蒙特卡洛误差估计和收敛诊断。提出的帕累托$ \ hat {k} $有限样本收敛率诊断对任何蒙特卡洛估计器都有用。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
采样约束连续分布的问题经常出现在许多机器/统计学习模型中。许多Monte Carlo Markov链(MCMC)采样方法已适应以处理随机变量的不同类型的约束。在这些方法中,与其他对应物相比,汉密尔顿蒙特卡洛(HMC)和相关方法在计算效率方面具有显着优势。在本文中,我们首先回顾了HMC和一些扩展的抽样方法,然后具体解释了三种受约束的基于HMC的采样方法,反射,重新制定和球形HMC。为了说明,我们应用这些方法来解决三个众所周知的约束采样问题,截断的多元正常分布,贝叶斯正则回归和非参数密度估计。在这篇综述中,我们还将约束的采样与受约束设计空间的实验的统计设计中的另一个类似问题联系起来。
translated by 谷歌翻译
贝叶斯变量选择是用于数据分析的强大工具,因为它为可变选择提供了原则性的方法,该方法可以说明事先信息和不确定性。但是,贝叶斯变量选择的广泛采用受到计算挑战的阻碍,尤其是在具有大量协变量P或非偶联的可能性的困难政权中。为了扩展到大型P制度,我们引入了一种有效的MCMC方案,其每次迭代的成本在P中是均等的。此外,我们还显示了如何将该方案扩展到用于计数数据的广义线性模型,这些模型在生物学,生态学,经济学,经济学,经济学,经济学,经济学,经济学,经济学上很普遍超越。特别是,我们设计有效的算法,用于二项式和负二项式回归中的可变选择,其中包括逻辑回归作为一种特殊情况。在实验中,我们证明了方法的有效性,包括对癌症和玉米基因组数据。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
最近,经验可能性已在贝叶斯框架下广泛应用。马尔可夫链蒙特卡洛(MCMC)方法经常用于从感兴趣参数的后验分布中采样。然而,可能性支持的复杂性,尤其是非凸性的性质,在选择适当的MCMC算法时建立了巨大的障碍。这种困难限制了在许多应用中基于贝叶斯的经验可能性(贝叶赛)方法的使用。在本文中,我们提出了一个两步的大都会黑斯廷斯算法,以从贝耶斯后期进行采样。我们的建议是在层次上指定的,其中确定经验可能性的估计方程用于根据其余参数的建议值提出一组参数的值。此外,我们使用经验可能性讨论贝叶斯模型的选择,并将我们的两步大都会黑斯廷斯算法扩展到可逆的跳跃马尔可夫链蒙特卡洛手术程序,以便从最终的后验中采样。最后,提出了我们提出的方法的几种应用。
translated by 谷歌翻译
We consider the problem of estimating the interacting neighborhood of a Markov Random Field model with finite support and homogeneous pairwise interactions based on relative positions of a two-dimensional lattice. Using a Bayesian framework, we propose a Reversible Jump Monte Carlo Markov Chain algorithm that jumps across subsets of a maximal range neighborhood, allowing us to perform model selection based on a marginal pseudoposterior distribution of models. To show the strength of our proposed methodology we perform a simulation study and apply it to a real dataset from a discrete texture image analysis.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译