Designing agents, capable of learning autonomously a wide range of skills is critical in order to increase the scope of reinforcement learning. It will both increase the diversity of learned skills and reduce the burden of manually designing reward functions for each skill. Self-supervised agents, setting their own goals, and trying to maximize the diversity of those goals have shown great promise towards this end. However, a currently known limitation of agents trying to maximize the diversity of sampled goals is that they tend to get attracted to noise or more generally to parts of the environments that cannot be controlled (distractors). When agents have access to predefined goal features or expert knowledge, absolute Learning Progress (ALP) provides a way to distinguish between regions that can be controlled and those that cannot. However, those methods often fall short when the agents are only provided with raw sensory inputs such as images. In this work we extend those concepts to unsupervised image-based goal exploration. We propose a framework that allows agents to autonomously identify and ignore noisy distracting regions while searching for novelty in the learnable regions to both improve overall performance and avoid catastrophic forgetting. Our framework can be combined with any state-of-the-art novelty seeking goal exploration approaches. We construct a rich 3D image based environment with distractors. Experiments on this environment show that agents using our framework successfully identify interesting regions of the environment, resulting in drastically improved performances. The source code is available at https://sites.google.com/view/grimgep.
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
通过与环境进行互动而没有任何外部监督是一个重要的挑战,可以通过与环境进行互动来学习各种技能。特别是,获得可以达到任何给定状态的目标条件的代理在许多应用中都有用。我们提出了一种新的方法,用于训练这种目标条件的代理,而没有任何外部奖励或任何领域知识。我们使用随机步行来训练可及性网络,以预测两个状态之间的相似性。然后,该可达性网络将用于构建目标记忆,其中包含过去的观察结果,这些观察值多样化且平衡。最后,我们训练一个目标条件条件的政策网络,其目标是从目标记忆中取得的目标,并通过可达性网络和目标记忆进行奖励。当代理商发现并学习新目标时,所有组件在整个培训中都进行了更新。我们将方法应用于连续的控制导航和机器人操纵任务。
translated by 谷歌翻译
在现实世界中经营通常需要代理商来了解复杂的环境,并应用这种理解以实现一系列目标。这个问题被称为目标有条件的强化学习(GCRL),对长地平线的目标变得特别具有挑战性。目前的方法通过使用基于图形的规划算法增强目标条件的策略来解决这个问题。然而,他们努力缩放到大型高维状态空间,并采用用于有效地收集训练数据的探索机制。在这项工作中,我们介绍了继任者功能标志性(SFL),这是一种探索大型高维环境的框架,以获得熟练的政策熟练的策略。 SFL利用继承特性(SF)来捕获转换动态的能力,通过估计状态新颖性来驱动探索,并通过将状态空间作为基于非参数标志的图形来实现高级规划。我们进一步利用SF直接计算地标遍历的目标条件调节策略,我们用于在探索状态空间边缘执行计划“前沿”地标。我们在我们的Minigrid和VizDoom进行了实验,即SFL可以高效地探索大型高维状态空间和优于长地平线GCRL任务的最先进的基线。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
多进球的增强学习最近吸引了大量的研究兴趣。通过允许在相关培训任务之间共享经验,只要在被考虑的目标空间中存在某些平滑度时,这种设置有利于测试时间的新任务的概括。但是,在州或目标空间不连续的环境(例如迷宫中的墙壁)中,由于缺乏专家知识的稀疏性,大多数目标都难以实现。这意味着必须发现一些艰苦的探索,必须发现一些目标课程,以通过使培训任务适应其当前功能来帮助代理商学习。我们以最新的自动课程学习技术为目标政策,我们提出了一种新颖的方法:Stein变化目标生成(SVGG),该方法通过利用一种学识渊博的模型来寻求在代理的近端开发区域中的新目标,以寻求新的目标它的能力和目标分布在勘探空间中以颗粒为模型。我们的方法依靠Stein变分梯度下降来动态吸引适当难度领域的目标采样分布。与最近最新的RL方法相比,我们证明了该方法的性能,即目标领域的成功覆盖范围。
translated by 谷歌翻译
通过稀疏奖励的环境中的深度加强学习学习机器人操纵是一项具有挑战性的任务。在本文中,我们通过引入虚构对象目标的概念来解决这个问题。对于给定的操纵任务,首先通过物理逼真的模拟训练感兴趣的对象以达到自己的目标位置,而不会被操纵。然后利用对象策略来构建可编征物体轨迹的预测模型,该轨迹提供具有逐步更加困难的对象目标的机器人来达到训练期间的课程。所提出的算法,遵循对象(FO),已经在需要增加探索程度的7个Mujoco环境中进行评估,并且与替代算法相比,取得了更高的成功率。在特别具有挑战性的学习场景中,例如当物体的初始和目标位置相隔甚远,我们的方法仍然可以学习政策,而竞争方法目前失败。
translated by 谷歌翻译
当加强学习以稀疏的奖励应用时,代理必须花费很长时间探索未知环境而没有任何学习信号。抽象是一种为代理提供在潜在空间中过渡的内在奖励的方法。先前的工作着重于密集的连续潜在空间,或要求用户手动提供表示形式。我们的方法是第一个自动学习基础环境的离散抽象的方法。此外,我们的方法使用端到端可训练的正规后继代表模型在任意输入空间上起作用。对于抽象状态之间的过渡,我们以选项的形式训练一组时间扩展的动作,即动作抽象。我们提出的算法,离散的国家行动抽象(DSAA),在训练这些选项之间进行迭代交换,并使用它们有效地探索更多环境以改善状态抽象。结果,我们的模型不仅对转移学习,而且在在线学习环境中有用。我们从经验上表明,与基线加强学习算法相比,我们的代理能够探索环境并更有效地解决任务。我们的代码可在\ url {https://github.com/amnonattali/dsaa}上公开获得。
translated by 谷歌翻译
在深RL(DRL)社区的一个主要挑战是培养能够概括了在训练中从未见过的情况下他们的控制策略代理。在不同的任务训练已被确定为良好的泛化,从而拉高研究人员倾向于使用经过复杂的连续参数空间控制程序丰富任务生成系统的一个关键因素。在这样复杂的工作空间,必须依靠某种形式的自动课程学习(ACL)对适应任务抽样分布给定的学习剂,而不是随机抽样的任务,因为许多最终可能会成为无论是琐碎的或不可行的。因为它是很难得到这样的任务空间的先验知识,许多ACL算法探索任务空间随着时间的推移,检测进度龛,昂贵的塔布拉-rasa的过程,为每个新的学习代理执行的需要,虽然他们可能有相似之处其功能配置文件。为了解决这个限制,我们引入元ACL的概念,并在暗箱RL学习者,即算法寻求课程一代推广到学习者的(未知)分布下正式化。在这项工作中,我们提出再次元ACL的第一个实例,并在多个模拟的环境相对于传统的ACL展示其为课程发电效益,包括与不同形态的学习程序产生的跑酷的环境。视频和代码可在https://sites.google.com/view/meta-acl。
translated by 谷歌翻译
强化学习(RL)代理商可以通过与环境进行交互来学习解决复杂的顺序决策任务。但是,样品效率仍然是一个重大挑战。在多目标RL领域中,需要代理以达到多个目标来解决复杂任务,提高采样效率可能尤其具有挑战性。另一方面,人类或其他生物代理商以更具战略方式学习此类任务,遵循随着难度水平的增加,以便逐步高效的学习进步。在这项工作中,我们提出了一种以自我监督方式使用动态距离功能(DDF)的自动目标生成方法。 DDF是一种函数,它预测马尔可夫决策过程(MDP)内的任何两个状态之间的动态距离。有了这个,我们在适当的难度水平下生成一个目标课程,以便在整个培训过程中有效地学习。我们在几个目标条件的机器人操纵和导航任务中评估这种方法,并在基线方法上显示出样本效率的改进,该方法仅使用随机目标采样。
translated by 谷歌翻译
与一组复杂的RL问题有关的目标条件加固学习(GCRL)训练代理在特定情况下实现不同的目标。与仅根据州或观察结果了解政策的标准RL解决方案相比,GCRL还要求代理商根据不同的目标做出决策。在这项调查中,我们对GCRL的挑战和算法进行了全面的概述。首先,我们回答该领域研究的基本问题。然后,我们解释了如何代表目标并介绍如何从不同角度设计现有解决方案。最后,我们得出结论,并讨论最近研究重点的潜在未来前景。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse rewards. The key insight of Go-Explore was that successful exploration requires an agent to first return to an interesting state ('Go'), and only then explore into unknown terrain ('Explore'). We refer to such exploration after a goal is reached as 'post-exploration'. In this paper, we present a clear ablation study of post-exploration in a general intrinsically motivated goal exploration process (IMGEP) framework, that the Go-Explore paper did not show. We study the isolated potential of post-exploration, by turning it on and off within the same algorithm under both tabular and deep RL settings on both discrete navigation and continuous control tasks. Experiments on a range of MiniGrid and Mujoco environments show that post-exploration indeed helps IMGEP agents reach more diverse states and boosts their performance. In short, our work suggests that RL researchers should consider to use post-exploration in IMGEP when possible since it is effective, method-agnostic and easy to implement.
translated by 谷歌翻译
In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch.
translated by 谷歌翻译
智能代理需要选择长时间的动作序列来解决复杂的任务。尽管人类很容易将任务分解为子目标,并通过数百万的肌肉命令将其纳入子目标,但尽管预算很大,但当前的人工智能仅限于具有数百个决策的任务。对层次强化学习的研究旨在克服这一局限性,但事实证明是具有挑战性的,当前的方法依赖于手动指定的目标空间或子任务,并且不存在一般解决方案。我们介绍了导演,这是一种实用方法,可以通过在学习世界模型的潜在空间内部计划直接从像素中学习层次行为。高级政策通过选择潜在目标,而低级政策学会实现目标,从而最大程度地提高了任务和探索奖励。尽管在潜在空间中运行,但这些决策还是可以解释的,因为世界模型可以将目标解码为图像以进行可视化。导演在具有稀疏奖励的任务上的探索方法(包括3D迷宫遍历,以及来自以自我为中心的相机和本体感受的四倍机器人,无需访问先前工作使用的全球位置或自上而下的视图。导演还学习各种环境的成功行为,包括视觉控制,Atari游戏和DMLAB级别。
translated by 谷歌翻译
Given a particular embodiment, we propose a novel method (C3PO) that learns policies able to achieve any arbitrary position and pose. Such a policy would allow for easier control, and would be re-useable as a key building block for downstream tasks. The method is two-fold: First, we introduce a novel exploration algorithm that optimizes for uniform coverage, is able to discover a set of achievable states, and investigates its abilities in attaining both high coverage, and hard-to-discover states; Second, we leverage this set of achievable states as training data for a universal goal-achievement policy, a goal-based SAC variant. We demonstrate the trained policy's performance in achieving a large number of novel states. Finally, we showcase the influence of massive unsupervised training of a goal-achievement policy with state-of-the-art pose-based control of the Hopper, Walker, Halfcheetah, Humanoid and Ant embodiments.
translated by 谷歌翻译