Neural Radiance Field (NeRF) has revolutionized free viewpoint rendering tasks and achieved impressive results. However, the efficiency and accuracy problems hinder its wide applications. To address these issues, we propose Geometry-Aware Generalized Neural Radiance Field (GARF) with a geometry-aware dynamic sampling (GADS) strategy to perform real-time novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalized NeRFs, our framework infers the unseen scenes on both pixel-scale and geometry-scale with only a few input images. More specifically, our method learns common attributes of novel-view synthesis by an encoder-decoder structure and a point-level learnable multi-view feature fusion module which helps avoid occlusion. To preserve scene characteristics in the generalized model, we introduce an unsupervised depth estimation module to derive the coarse geometry, narrow down the ray sampling interval to proximity space of the estimated surface and sample in expectation maximum position, constituting Geometry-Aware Dynamic Sampling strategy (GADS). Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist more informative representation learning. Extensive experiments on indoor and outdoor datasets show that comparing with state-of-the-art generalized NeRF methods, GARF reduces samples by more than 25\%, while improving rendering quality and 3D geometry estimation.
translated by 谷歌翻译
我们提出了可推广的NERF变压器(GNT),这是一种纯粹的,统一的基于变压器的体系结构,可以从源视图中有效地重建神经辐射场(NERF)。与NERF上的先前作品不同,通过颠倒手工渲染方程来优化人均隐式表示,GNT通过封装两个基于变压器的阶段来实现可概括的神经场景表示和渲染。 GNT的第一阶段,称为View Transformer,利用多视图几何形状作为基于注意力的场景表示的电感偏差,并通过在相邻视图上从异性线中汇总信息来预测与坐标对齐的特征。 GNT的第二阶段,名为Ray Transformer,通过Ray Marching呈现新视图,并使用注意机制直接解码采样点特征的序列。我们的实验表明,当在单个场景上进行优化时,GNT可以在不明确渲染公式的情况下成功重建NERF,甚至由于可学习的射线渲染器,在复杂的场景上甚至将PSNR提高了〜1.3db。当在各种场景中接受培训时,GNT转移到前面的LLFF数据集(LPIPS〜20%,SSIM〜25%$)和合成搅拌器数据集(LPIPS〜20%,SSIM 〜25%$)时,GNN会始终达到最先进的性能4%)。此外,我们表明可以从学习的注意图中推断出深度和遮挡,这意味着纯粹的注意机制能够学习一个物理地面渲染过程。所有这些结果使我们更接近将变形金刚作为“通用建模工具”甚至用于图形的诱人希望。请参阅我们的项目页面以获取视频结果:https://vita-group.github.io/gnt/。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译
神经辐射场(NERF)具有密集捕获的输入图像实现光真实的视图合成。然而,鉴于稀疏的视图,NERF的几何形状极为严重,从而导致新观点合成质量的显着降解。受到自我监督的深度估计方法的启发,我们提出了structnerf,这是针对稀疏输入的室内场景的新型视图合成的解决方案。 structnerf利用自然嵌入多视图输入中的结构提示来处理NERF中无约束的几何问题。具体而言,它分别解决了纹理和非纹理区域:提出了基于贴片的多视图一致的光度损失来限制纹理区域的几何形状;对于非纹理的,我们明确地将它们限制为3D一致的平面。通过密集的自我监督深度约束,我们的方法可以改善NERF的几何形状和视图综合性能,而无需对外部数据进行任何其他培训。在几个现实世界数据集上进行的广泛实验表明,构造者超过了针对室内场景的最新方法,这些方法具有稀疏输入的定量和定性。
translated by 谷歌翻译
Volumetric neural rendering methods like NeRF generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism. The experiments on the DTU, the NeRF Synthetics , the ScanNet and the Tanks and Temples datasets demonstrate Point-NeRF can surpass the existing methods and achieve the state-of-the-art results.
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
神经场景表示,例如神经辐射场(NERF),基于训练多层感知器(MLP),使用一组具有已知姿势的彩色图像。现在,越来越多的设备产生RGB-D(颜色 +深度)信息,这对于各种任务非常重要。因此,本文的目的是通过将深度信息与颜色图像结合在一起,研究这些有希望的隐式表示可以进行哪些改进。特别是,最近建议的MIP-NERF方法使用圆锥形的圆丝而不是射线进行音量渲染,它使人们可以考虑具有距离距离摄像头中心距离的像素的不同区域。所提出的方法还模拟了深度不确定性。这允许解决基于NERF的方法的主要局限性,包括提高几何形状的准确性,减少伪像,更快的训练时间和缩短预测时间。实验是在众所周知的基准场景上进行的,并且比较在场景几何形状和光度重建中的准确性提高,同时将训练时间减少了3-5次。
translated by 谷歌翻译
在不同观点之间找到准确的对应关系是无监督的多视图立体声(MVS)的跟腱。现有方法是基于以下假设:相应的像素具有相似的光度特征。但是,在实际场景中,多视图图像观察到非斜面的表面和经验遮挡。在这项工作中,我们提出了一种新颖的方法,即神经渲染(RC-MVSNET),以解决观点之间对应关系的歧义问题。具体而言,我们施加了一个深度渲染一致性损失,以限制靠近对象表面的几何特征以减轻遮挡。同时,我们引入了参考视图综合损失,以产生一致的监督,即使是针对非兰伯特表面。关于DTU和TANKS \&Temples基准测试的广泛实验表明,我们的RC-MVSNET方法在无监督的MVS框架上实现了最先进的性能,并对许多有监督的方法进行了竞争性能。该代码在https://github.com/上发布。 BOESE0601/RC-MVSNET
translated by 谷歌翻译
最近的神经人类表示可以产生高质量的多视图渲染,但需要使用密集的多视图输入和昂贵的培训。因此,它们在很大程度上仅限于静态模型,因为每个帧都是不可行的。我们展示了人类学 - 一种普遍的神经表示 - 用于高保真自由观察动态人类的合成。类似于IBRNET如何通过避免每场景训练来帮助NERF,Humannerf跨多视图输入采用聚合像素对准特征,以及用于解决动态运动的姿势嵌入的非刚性变形场。原始人物员已经可以在稀疏视频输入的稀疏视频输入上产生合理的渲染。为了进一步提高渲染质量,我们使用外观混合模块增强了我们的解决方案,用于组合神经体积渲染和神经纹理混合的益处。各种多视图动态人类数据集的广泛实验证明了我们在挑战运动中合成照片 - 现实自由观点的方法和非常稀疏的相机视图输入中的普遍性和有效性。
translated by 谷歌翻译
With the success of neural volume rendering in novel view synthesis, neural implicit reconstruction with volume rendering has become popular. However, most methods optimize per-scene functions and are unable to generalize to novel scenes. We introduce VolRecon, a generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct with fine details and little noise, we combine projection features, aggregated from multi-view features with a view transformer, and volume features interpolated from a coarse global feature volume. A ray transformer computes SRDF values of all the samples along a ray to estimate the surface location, which are used for volume rendering of color and depth. Extensive experiments on DTU and ETH3D demonstrate the effectiveness and generalization ability of our method. On DTU, our method outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable quality as MVSNet in full view reconstruction. Besides, our method shows good generalization ability on the large-scale ETH3D benchmark. Project page: https://fangjinhuawang.github.io/VolRecon.
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
多视图立体声(MVS)是3D计算机视觉中的核心任务。随着新颖的深度学习方法的激增,学习的MVS超过了经典方法的准确性,但仍然依赖于建立记忆密集型密集的成本量。新型视图合成(NVS)是一项平行的研究线,最近发现神经辐射场(NERF)模型的普及程度增加,该模型优化了每个场景辐射场。但是,NERF方法不会推广到新颖的场景,并且训练和测试速度很慢。我们建议用一个可以恢复3D场景几何形状作为距离函数的新型网络以及高分辨率的颜色图像来弥合这两种方法之间的差距。我们的方法仅使用一组稀疏的图像作为输入,可以很好地推广到新颖的场景。此外,我们提出了一种粗糙的球形追踪方法,以显着提高速度。我们在各种数据集上表明,我们的方法达到了与人均优化方法的可比精度,同时能够概括和运行速度更快。我们在https://github.com/ais-bonn/neural_mvs上提供源代码
translated by 谷歌翻译
尽管神经辐射场(NERF)迅速发展,但稠密的必要性在很大程度上禁止其更广泛的应用。尽管最近的一些作品试图解决这个问题,但它们要么以稀疏的视图(仍然是其中的一些)操作,要么在简单的对象/场景上运行。在这项工作中,我们考虑了一项更雄心勃勃的任务:通过“只看一次”,即仅使用单个视图来训练神经辐射场,而是在现实的复杂视觉场景上。为了实现这一目标,我们提出了一个视图NERF(SINNERF)框架,该框架由精心设计的语义和几何正规化组成。具体而言,Sinnerf构建了一个半监督的学习过程,我们在其中介绍并传播几何标签和语义伪标签,以指导渐进式训练过程。广泛的实验是在复杂的场景基准上进行的,包括NERF合成数据集,本地光场融合数据集和DTU数据集。我们表明,即使在多视图数据集上进行预训练,Sinnerf也可以产生照片现实的新型视图合成结果。在单个图像设置下,Sinnerf在所有情况下都显着胜过当前最新的NERF基线。项目页面:https://vita-group.github.io/sinnerf/
translated by 谷歌翻译
我们呈现Geonerf,一种基于神经辐射场的完全光电素质性新颖性研究综合方法。我们的方法由两个主要阶段组成:几何推理和渲染器。为了渲染新颖的视图,几何件推理首先为每个附近的源视图构造级联成本卷。然后,使用基于变压器的注意力机制和级联成本卷,渲染器Infers的几何和外观,并通过经典音量渲染技术呈现细节的图像。特别是该架构允许复杂的遮挡推理,从一致的源视图中收集信息。此外,我们的方法可以在单个场景中轻松进行微调,通过每场比较优化的神经渲染方法呈现竞争结果,其数量是计算成本。实验表明,Geonerf优于各种合成和实时数据集的最先进的最新神经渲染模型。最后,随着对几何推理的略微修改,我们还提出了一种适应RGBD图像的替代模型。由于深度传感器,该模型通常直接利用经常使用的深度信息。实施代码将公开可用。
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译
我们提出了一种基于神经辐射场(NERF)的单个$ 360^\ PANORAMA图像合成新视图的方法。在类似环境中的先前研究依赖于多层感知的邻居插值能力来完成由遮挡引起的丢失区域,这导致其预测中的伪像。我们提出了360Fusionnerf,这是一个半监督的学习框架,我们介绍几何监督和语义一致性,以指导渐进式培训过程。首先,将输入图像重新投影至$ 360^\ Circ $图像,并在其他相机位置提取辅助深度图。除NERF颜色指导外,深度监督还改善了合成视图的几何形状。此外,我们引入了语义一致性损失,鼓励新观点的现实渲染。我们使用预先训练的视觉编码器(例如剪辑)提取这些语义功能,这是一个视觉变压器,经过数以千计的不同2D照片,并通过自然语言监督从网络中挖掘出来。实验表明,我们提出的方法可以在保留场景的特征的同时产生未观察到的区域的合理完成。 360fusionnerf在各种场景中接受培训时,转移到合成结构3D数据集(PSNR〜5%,SSIM〜3%lpips〜13%)时,始终达到最先进的性能,SSIM〜3%LPIPS〜9%)和replica360数据集(PSNR〜8%,SSIM〜2%LPIPS〜18%)。
translated by 谷歌翻译
b) MVS-NeRF no fine-tuning c) MVS-NeRF 6 min fine-tuning d) NeRF 5.1h optimization a) Source views SSIM:0.766 SSIM: 0.923 SSIM:0.924 * Equal contribution Research done when Anpei Chen was in a remote internship with UCSD.generalizable radiance field reconstruction. Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction with higher rendering quality and substantially less optimization time than NeRF.
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译