尽管神经辐射场(NERF)迅速发展,但稠密的必要性在很大程度上禁止其更广泛的应用。尽管最近的一些作品试图解决这个问题,但它们要么以稀疏的视图(仍然是其中的一些)操作,要么在简单的对象/场景上运行。在这项工作中,我们考虑了一项更雄心勃勃的任务:通过“只看一次”,即仅使用单个视图来训练神经辐射场,而是在现实的复杂视觉场景上。为了实现这一目标,我们提出了一个视图NERF(SINNERF)框架,该框架由精心设计的语义和几何正规化组成。具体而言,Sinnerf构建了一个半监督的学习过程,我们在其中介绍并传播几何标签和语义伪标签,以指导渐进式训练过程。广泛的实验是在复杂的场景基准上进行的,包括NERF合成数据集,本地光场融合数据集和DTU数据集。我们表明,即使在多视图数据集上进行预训练,Sinnerf也可以产生照片现实的新型视图合成结果。在单个图像设置下,Sinnerf在所有情况下都显着胜过当前最新的NERF基线。项目页面:https://vita-group.github.io/sinnerf/
translated by 谷歌翻译
我们提出了一种基于神经辐射场(NERF)的单个$ 360^\ PANORAMA图像合成新视图的方法。在类似环境中的先前研究依赖于多层感知的邻居插值能力来完成由遮挡引起的丢失区域,这导致其预测中的伪像。我们提出了360Fusionnerf,这是一个半监督的学习框架,我们介绍几何监督和语义一致性,以指导渐进式培训过程。首先,将输入图像重新投影至$ 360^\ Circ $图像,并在其他相机位置提取辅助深度图。除NERF颜色指导外,深度监督还改善了合成视图的几何形状。此外,我们引入了语义一致性损失,鼓励新观点的现实渲染。我们使用预先训练的视觉编码器(例如剪辑)提取这些语义功能,这是一个视觉变压器,经过数以千计的不同2D照片,并通过自然语言监督从网络中挖掘出来。实验表明,我们提出的方法可以在保留场景的特征的同时产生未观察到的区域的合理完成。 360fusionnerf在各种场景中接受培训时,转移到合成结构3D数据集(PSNR〜5%,SSIM〜3%lpips〜13%)时,始终达到最先进的性能,SSIM〜3%LPIPS〜9%)和replica360数据集(PSNR〜8%,SSIM〜2%LPIPS〜18%)。
translated by 谷歌翻译
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can easily reconstruct the body geometry and infer the full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT introduces the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pre-trained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed current state-of-the-art avatar creation methods when only a single image is available. Code will be public for reseach purpose at https://elicit3d.github.io .
translated by 谷歌翻译
我们呈现NERF-SR,一种用于高分辨率(HR)新型视图合成的解决方案,主要是低分辨率(LR)输入。我们的方法是基于神经辐射场(NERF)的内置,其预测每点密度和颜色,具有多层的射击。在在任意尺度上产生图像时,NERF与超越观察图像的分辨率努力。我们的关键识别是NERF具有本地之前的,这意味着可以在附近区域传播3D点的预测,并且保持准确。我们首先通过超级采样策略来利用它,该策略在每个图像像素处射击多个光线,这在子像素级别强制了多视图约束。然后,我们表明,NERF-SR可以通过改进网络进一步提高超级采样的性能,该细化网络利用估计的深度来实现HR参考图像上的相关补丁的幻觉。实验结果表明,NERF-SR在合成和现实世界数据集的HR上为新型视图合成产生高质量结果。
translated by 谷歌翻译
由于其简单性和最先进的性能,神经辐射场(NERF)被出现为新型视图综合任务的强大表示。虽然NERF可以在许多输入视图可用时产生看不见的观点的光静观渲染,但是当该数量减少时,其性能显着下降。我们观察到,稀疏输入方案中的大多数伪像是由估计场景几何中的错误引起的,并且在训练开始时通过不同的行为引起。我们通过规范从未观察的视点呈现的修补程序的几何和外观来解决这一点,并在训练期间退火光线采样空间。我们还使用规范化的流模型来规范未观察的视点的颜色。我们的车型不仅优于优化单个场景的其他方法,而是在许多情况下,还有条件模型,这些模型在大型多视图数据集上广泛预先培训。
translated by 谷歌翻译
Neural Radiance Field (NeRF) has revolutionized free viewpoint rendering tasks and achieved impressive results. However, the efficiency and accuracy problems hinder its wide applications. To address these issues, we propose Geometry-Aware Generalized Neural Radiance Field (GARF) with a geometry-aware dynamic sampling (GADS) strategy to perform real-time novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalized NeRFs, our framework infers the unseen scenes on both pixel-scale and geometry-scale with only a few input images. More specifically, our method learns common attributes of novel-view synthesis by an encoder-decoder structure and a point-level learnable multi-view feature fusion module which helps avoid occlusion. To preserve scene characteristics in the generalized model, we introduce an unsupervised depth estimation module to derive the coarse geometry, narrow down the ray sampling interval to proximity space of the estimated surface and sample in expectation maximum position, constituting Geometry-Aware Dynamic Sampling strategy (GADS). Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist more informative representation learning. Extensive experiments on indoor and outdoor datasets show that comparing with state-of-the-art generalized NeRF methods, GARF reduces samples by more than 25\%, while improving rendering quality and 3D geometry estimation.
translated by 谷歌翻译
通过隐式表示表示视觉信号(例如,基于坐标的深网)在许多视觉任务中都占了上风。这项工作探讨了一个新的有趣的方向:使用可以适用于各种2D和3D场景的广义方法训练风格化的隐式表示。我们对各种隐式函数进行了试点研究,包括基于2D坐标的表示,神经辐射场和签名距离函数。我们的解决方案是一个统一的隐式神经风化框架,称为INS。与Vanilla隐式表示相反,INS将普通隐式函数分解为样式隐式模块和内容隐式模块,以便从样式图像和输入场景中分别编码表示表示。然后,应用合并模块来汇总这些信息并合成样式化的输出。为了使3D场景中的几何形状进行正规化,我们提出了一种新颖的自我鉴定几何形状一致性损失,该损失保留了风格化场景的几何忠诚度。全面的实验是在多个任务设置上进行的,包括对复杂场景的新型综合,隐式表面的风格化以及使用MLP拟合图像。我们进一步证明,学到的表示不仅是连续的,而且在风格上都是连续的,从而导致不同样式之间毫不费力地插值,并以新的混合样式生成图像。请参阅我们的项目页面上的视频以获取更多查看综合结果:https://zhiwenfan.github.io/ins。
translated by 谷歌翻译
神经辐射场(NERF)具有密集捕获的输入图像实现光真实的视图合成。然而,鉴于稀疏的视图,NERF的几何形状极为严重,从而导致新观点合成质量的显着降解。受到自我监督的深度估计方法的启发,我们提出了structnerf,这是针对稀疏输入的室内场景的新型视图合成的解决方案。 structnerf利用自然嵌入多视图输入中的结构提示来处理NERF中无约束的几何问题。具体而言,它分别解决了纹理和非纹理区域:提出了基于贴片的多视图一致的光度损失来限制纹理区域的几何形状;对于非纹理的,我们明确地将它们限制为3D一致的平面。通过密集的自我监督深度约束,我们的方法可以改善NERF的几何形状和视图综合性能,而无需对外部数据进行任何其他培训。在几个现实世界数据集上进行的广泛实验表明,构造者超过了针对室内场景的最新方法,这些方法具有稀疏输入的定量和定性。
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译
我们呈现Geonerf,一种基于神经辐射场的完全光电素质性新颖性研究综合方法。我们的方法由两个主要阶段组成:几何推理和渲染器。为了渲染新颖的视图,几何件推理首先为每个附近的源视图构造级联成本卷。然后,使用基于变压器的注意力机制和级联成本卷,渲染器Infers的几何和外观,并通过经典音量渲染技术呈现细节的图像。特别是该架构允许复杂的遮挡推理,从一致的源视图中收集信息。此外,我们的方法可以在单个场景中轻松进行微调,通过每场比较优化的神经渲染方法呈现竞争结果,其数量是计算成本。实验表明,Geonerf优于各种合成和实时数据集的最先进的最新神经渲染模型。最后,随着对几何推理的略微修改,我们还提出了一种适应RGBD图像的替代模型。由于深度传感器,该模型通常直接利用经常使用的深度信息。实施代码将公开可用。
translated by 谷歌翻译
尽管神经辐射场(NERF)在新型视图合成方面表现出了令人印象深刻的进步,但大多数方法通常需要具有准确的相机姿势的同一场景的多个输入图像。在这项工作中,我们试图将输入实质上减少到单个未予以的图像。现有的方法在本地图像功能上有条件重建一个3D对象,但通常会在远离源视图的视点处进行模糊的预测。为了解决这个问题,我们建议利用全球和本地功能形成表现力的3D表示。全局功能是从视觉变压器中学到的,而本地功能则从2D卷积网络中提取。为了综合一种新型视图,我们训练以学习的3D表示条件进行量渲染的多层感知器(MLP)网络。这种新颖的3D表示允许网络重建看不见的区域,而无需执行对称或规范坐标系等约束。我们的方法只能从单个输入图像中渲染新视图,并使用单个模型在多个对象类别中概括。定量和定性评估表明,所提出的方法可实现最先进的绩效,并使细节比现有方法更丰富。
translated by 谷歌翻译
自从神经辐射场(NERF)出现以来,神经渲染引起了极大的关注,并且已经大大推动了新型视图合成的最新作品。最近的重点是在模型上过度适合单个场景,以及学习模型的一些尝试,这些模型可以综合看不见的场景的新型视图,主要包括将深度卷积特征与类似NERF的模型组合在一起。我们提出了一个不同的范式,不需要深层特征,也不需要类似NERF的体积渲染。我们的方法能够直接从现场采样的贴片集中直接预测目标射线的颜色。我们首先利用表现几何形状沿着每个参考视图的异性线提取斑块。每个贴片线性地投影到1D特征向量和一系列变压器处理集合中。对于位置编码,我们像在光场表示中一样对射线进行参数化,并且至关重要的差异是坐标是相对于目标射线的规范化的,这使我们的方法与参考帧无关并改善了概括。我们表明,即使接受比先前的工作要少得多的数据训练,我们的方法在新颖的综合综合方面都超出了最新的视图综合。
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
神经体积表示表明,MLP网络可以通过多视图校准图像来训练MLP网络,以表示场景的几何形状和外观,而无需显式3D监督。对象分割可以根据学习的辐射字段丰富许多下游应用程序。但是,引入手工制作的细分以在复杂的现实世界中定义感兴趣的区域是非平凡且昂贵的,因为它获得了每个视图注释。本文使用NERF进行复杂的现实世界场景来探索对物体分割的自我监督学习。我们的框架,nerf-sos,夫妻对象分割和神经辐射字段,以在场景中的任何视图中分割对象。通过提出一种新颖的合作对比度损失,在外观和几何水平上,NERF-SOS鼓励NERF模型将紧凑的几何学分割簇从其密度字段中提炼出紧凑的几何学分割簇以及自我监督的预训练的预训练的2D视觉特征。可以将自我监督的对象分割框架应用于各种NERF模型,这些模型既可以导致室内和室外场景的照片真实的渲染结果和令人信服的分割。 LLFF,坦克和寺庙数据集的广泛结果验证了NERF-SOS的有效性。它始终超过其他基于图像的自我监督基线,甚至比监督的语义nerf捕捉细节。
translated by 谷歌翻译
本文提出了一个逐步连接的光场网络(Prolif),以构成复杂的前向场景的新观点。扩散编码一个4D光场,该场允许在一个训练步骤中渲染大量射线,以实现图像或贴片级损失。直接从图像中学习神经光场很难呈现多视图一致的图像,因为它对基础3D几何形状的不了解。为了解决这个问题,我们提出了一种渐进培训计划和正则化损失,以推断训练过程中的基础几何形状,这两者都会实现多视图一致性,从而极大地提高了渲染质量。实验表明,与香草神经光场相比,我们的方法能够实现明显更好的渲染质量,并且与挑战性的LLFF数据集和闪亮对象数据集的类似NERF的渲染方法相当。此外,我们证明了与LPIP的损失更好的兼容性,以实现与不同的光条件和剪辑损失的稳健性,以控制场景的渲染方式。项目页面:https://totoro97.github.io/projects/prolif。
translated by 谷歌翻译
我们提出了可推广的NERF变压器(GNT),这是一种纯粹的,统一的基于变压器的体系结构,可以从源视图中有效地重建神经辐射场(NERF)。与NERF上的先前作品不同,通过颠倒手工渲染方程来优化人均隐式表示,GNT通过封装两个基于变压器的阶段来实现可概括的神经场景表示和渲染。 GNT的第一阶段,称为View Transformer,利用多视图几何形状作为基于注意力的场景表示的电感偏差,并通过在相邻视图上从异性线中汇总信息来预测与坐标对齐的特征。 GNT的第二阶段,名为Ray Transformer,通过Ray Marching呈现新视图,并使用注意机制直接解码采样点特征的序列。我们的实验表明,当在单个场景上进行优化时,GNT可以在不明确渲染公式的情况下成功重建NERF,甚至由于可学习的射线渲染器,在复杂的场景上甚至将PSNR提高了〜1.3db。当在各种场景中接受培训时,GNT转移到前面的LLFF数据集(LPIPS〜20%,SSIM〜25%$)和合成搅拌器数据集(LPIPS〜20%,SSIM 〜25%$)时,GNN会始终达到最先进的性能4%)。此外,我们表明可以从学习的注意图中推断出深度和遮挡,这意味着纯粹的注意机制能够学习一个物理地面渲染过程。所有这些结果使我们更接近将变形金刚作为“通用建模工具”甚至用于图形的诱人希望。请参阅我们的项目页面以获取视频结果:https://vita-group.github.io/gnt/。
translated by 谷歌翻译
我们提出了一个基于变压器的NERF(Transnerf),以学习在新视图合成任务的观察视图图像上进行的通用神经辐射场。相比之下,现有的基于MLP的NERF无法直接接收具有任意号码的观察视图,并且需要基于辅助池的操作来融合源视图信息,从而导致源视图与目标渲染视图之间缺少复杂的关系。此外,当前方法分别处理每个3D点,忽略辐射场场景表示的局部一致性。这些局限性可能会在挑战现实世界应用中降低其性能,在这些应用程序中可能存在巨大的差异和新颖的渲染视图之间的巨大差异。为了应对这些挑战,我们的Transnerf利用注意机制自然地将任意数量的源视图的深层关联解码为基于坐标的场景表示。在统一变压器网络中,在射线铸造空间和周围视图空间中考虑了形状和外观的局部一致性。实验表明,与基于图像的最先进的基于图像的神经渲染方法相比,我们在各种场景上接受过培训的Transnf可以在场景 - 敏捷和每个场景的燃烧场景中获得更好的性能。源视图与渲染视图之间的差距很大。
translated by 谷歌翻译
Virtual reality and augmented reality (XR) bring increasing demand for 3D content. However, creating high-quality 3D content requires tedious work that a human expert must do. In this work, we study the challenging task of lifting a single image to a 3D object and, for the first time, demonstrate the ability to generate a plausible 3D object with 360{\deg} views that correspond well with the given reference image. By conditioning on the reference image, our model can fulfill the everlasting curiosity for synthesizing novel views of objects from images. Our technique sheds light on a promising direction of easing the workflows for 3D artists and XR designers. We propose a novel framework, dubbed NeuralLift-360, that utilizes a depth-aware neural radiance representation (NeRF) and learns to craft the scene guided by denoising diffusion models. By introducing a ranking loss, our NeuralLift-360 can be guided with rough depth estimation in the wild. We also adopt a CLIP-guided sampling strategy for the diffusion prior to provide coherent guidance. Extensive experiments demonstrate that our NeuralLift-360 significantly outperforms existing state-of-the-art baselines. Project page: https://vita-group.github.io/NeuralLift-360/
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
translated by 谷歌翻译