我们呈现Geonerf,一种基于神经辐射场的完全光电素质性新颖性研究综合方法。我们的方法由两个主要阶段组成:几何推理和渲染器。为了渲染新颖的视图,几何件推理首先为每个附近的源视图构造级联成本卷。然后,使用基于变压器的注意力机制和级联成本卷,渲染器Infers的几何和外观,并通过经典音量渲染技术呈现细节的图像。特别是该架构允许复杂的遮挡推理,从一致的源视图中收集信息。此外,我们的方法可以在单个场景中轻松进行微调,通过每场比较优化的神经渲染方法呈现竞争结果,其数量是计算成本。实验表明,Geonerf优于各种合成和实时数据集的最先进的最新神经渲染模型。最后,随着对几何推理的略微修改,我们还提出了一种适应RGBD图像的替代模型。由于深度传感器,该模型通常直接利用经常使用的深度信息。实施代码将公开可用。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译
本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
b) MVS-NeRF no fine-tuning c) MVS-NeRF 6 min fine-tuning d) NeRF 5.1h optimization a) Source views SSIM:0.766 SSIM: 0.923 SSIM:0.924 * Equal contribution Research done when Anpei Chen was in a remote internship with UCSD.generalizable radiance field reconstruction. Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction with higher rendering quality and substantially less optimization time than NeRF.
translated by 谷歌翻译
我们提出了可推广的NERF变压器(GNT),这是一种纯粹的,统一的基于变压器的体系结构,可以从源视图中有效地重建神经辐射场(NERF)。与NERF上的先前作品不同,通过颠倒手工渲染方程来优化人均隐式表示,GNT通过封装两个基于变压器的阶段来实现可概括的神经场景表示和渲染。 GNT的第一阶段,称为View Transformer,利用多视图几何形状作为基于注意力的场景表示的电感偏差,并通过在相邻视图上从异性线中汇总信息来预测与坐标对齐的特征。 GNT的第二阶段,名为Ray Transformer,通过Ray Marching呈现新视图,并使用注意机制直接解码采样点特征的序列。我们的实验表明,当在单个场景上进行优化时,GNT可以在不明确渲染公式的情况下成功重建NERF,甚至由于可学习的射线渲染器,在复杂的场景上甚至将PSNR提高了〜1.3db。当在各种场景中接受培训时,GNT转移到前面的LLFF数据集(LPIPS〜20%,SSIM〜25%$)和合成搅拌器数据集(LPIPS〜20%,SSIM 〜25%$)时,GNN会始终达到最先进的性能4%)。此外,我们表明可以从学习的注意图中推断出深度和遮挡,这意味着纯粹的注意机制能够学习一个物理地面渲染过程。所有这些结果使我们更接近将变形金刚作为“通用建模工具”甚至用于图形的诱人希望。请参阅我们的项目页面以获取视频结果:https://vita-group.github.io/gnt/。
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
多视图立体声(MVS)是3D计算机视觉中的核心任务。随着新颖的深度学习方法的激增,学习的MVS超过了经典方法的准确性,但仍然依赖于建立记忆密集型密集的成本量。新型视图合成(NVS)是一项平行的研究线,最近发现神经辐射场(NERF)模型的普及程度增加,该模型优化了每个场景辐射场。但是,NERF方法不会推广到新颖的场景,并且训练和测试速度很慢。我们建议用一个可以恢复3D场景几何形状作为距离函数的新型网络以及高分辨率的颜色图像来弥合这两种方法之间的差距。我们的方法仅使用一组稀疏的图像作为输入,可以很好地推广到新颖的场景。此外,我们提出了一种粗糙的球形追踪方法,以显着提高速度。我们在各种数据集上表明,我们的方法达到了与人均优化方法的可比精度,同时能够概括和运行速度更快。我们在https://github.com/ais-bonn/neural_mvs上提供源代码
translated by 谷歌翻译
Volumetric neural rendering methods like NeRF generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism. The experiments on the DTU, the NeRF Synthetics , the ScanNet and the Tanks and Temples datasets demonstrate Point-NeRF can surpass the existing methods and achieve the state-of-the-art results.
translated by 谷歌翻译
自从神经辐射场(NERF)出现以来,神经渲染引起了极大的关注,并且已经大大推动了新型视图合成的最新作品。最近的重点是在模型上过度适合单个场景,以及学习模型的一些尝试,这些模型可以综合看不见的场景的新型视图,主要包括将深度卷积特征与类似NERF的模型组合在一起。我们提出了一个不同的范式,不需要深层特征,也不需要类似NERF的体积渲染。我们的方法能够直接从现场采样的贴片集中直接预测目标射线的颜色。我们首先利用表现几何形状沿着每个参考视图的异性线提取斑块。每个贴片线性地投影到1D特征向量和一系列变压器处理集合中。对于位置编码,我们像在光场表示中一样对射线进行参数化,并且至关重要的差异是坐标是相对于目标射线的规范化的,这使我们的方法与参考帧无关并改善了概括。我们表明,即使接受比先前的工作要少得多的数据训练,我们的方法在新颖的综合综合方面都超出了最新的视图综合。
translated by 谷歌翻译
我们探索了基于神经光场表示的几种新颖观点合成的新策略。给定目标摄像头姿势,隐式神经网络将每个射线映射到其目标像素的颜色。该网络的条件是根据来自显式3D特征量的粗量渲染产生的本地射线特征。该卷是由使用3D Convnet的输入图像构建的。我们的方法在基于最先进的神经辐射场竞争方面,在合成和真实MVS数据上实现了竞争性能,同时提供了100倍的渲染速度。
translated by 谷歌翻译
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.
translated by 谷歌翻译
Neural Radiance Field (NeRF) has revolutionized free viewpoint rendering tasks and achieved impressive results. However, the efficiency and accuracy problems hinder its wide applications. To address these issues, we propose Geometry-Aware Generalized Neural Radiance Field (GARF) with a geometry-aware dynamic sampling (GADS) strategy to perform real-time novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalized NeRFs, our framework infers the unseen scenes on both pixel-scale and geometry-scale with only a few input images. More specifically, our method learns common attributes of novel-view synthesis by an encoder-decoder structure and a point-level learnable multi-view feature fusion module which helps avoid occlusion. To preserve scene characteristics in the generalized model, we introduce an unsupervised depth estimation module to derive the coarse geometry, narrow down the ray sampling interval to proximity space of the estimated surface and sample in expectation maximum position, constituting Geometry-Aware Dynamic Sampling strategy (GADS). Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist more informative representation learning. Extensive experiments on indoor and outdoor datasets show that comparing with state-of-the-art generalized NeRF methods, GARF reduces samples by more than 25\%, while improving rendering quality and 3D geometry estimation.
translated by 谷歌翻译
We present a method for novel view synthesis from input images that are freely distributed around a scene. Our method does not rely on a regular arrangement of input views, can synthesize images for free camera movement through the scene, and works for general scenes with unconstrained geometric layouts. We calibrate the input images via SfM and erect a coarse geometric scaffold via MVS. This scaffold is used to create a proxy depth map for a novel view of the scene. Based on this depth map, a recurrent encoder-decoder network processes reprojected features from nearby views and synthesizes the new view. Our network does not need to be optimized for a given scene. After training on a dataset, it works in previously unseen environments with no finetuning or per-scene optimization. We evaluate the presented approach on challenging real-world datasets, including Tanks and Temples, where we demonstrate successful view synthesis for the first time and substantially outperform prior and concurrent work.
translated by 谷歌翻译
在本文中,我们提出了一个简单的SEQ2SEQ公式,用于查看合成,其中我们将一组射线点作为输入和输出颜色对应于射线。在此SEQ2SEQ公式上直接应用标准变压器具有两个局限性。首先,标准注意力不能成功拟合体积渲染过程,因此在合成视图中缺少高频组件。其次,将全球关注应用于所有射线和像素非常效率极低。受神经辐射场(NERF)的启发,我们建议NERF注意(NERFA)解决上述问题。一方面,Nerfa将体积渲染方程视为软特征调制过程。通过这种方式,特征调制可以通过类似NERF的电感偏置增强变压器。另一方面,Nerfa执行多阶段的关注以减少计算开销。此外,NERFA模型采用射线和像素变压器来学习射线和像素之间的相互作用。 Nerfa在四个数据集上展示了比NERF和Nerformer出色的性能:DeepVoxels,Blender,LLFF和CO3D。此外,Nerfa在两个设置下建立了一个新的最新技术:单场视图合成和以类别为中心的小说视图合成。该代码将公开可用。
translated by 谷歌翻译
尽管神经辐射场(NERF)迅速发展,但稠密的必要性在很大程度上禁止其更广泛的应用。尽管最近的一些作品试图解决这个问题,但它们要么以稀疏的视图(仍然是其中的一些)操作,要么在简单的对象/场景上运行。在这项工作中,我们考虑了一项更雄心勃勃的任务:通过“只看一次”,即仅使用单个视图来训练神经辐射场,而是在现实的复杂视觉场景上。为了实现这一目标,我们提出了一个视图NERF(SINNERF)框架,该框架由精心设计的语义和几何正规化组成。具体而言,Sinnerf构建了一个半监督的学习过程,我们在其中介绍并传播几何标签和语义伪标签,以指导渐进式训练过程。广泛的实验是在复杂的场景基准上进行的,包括NERF合成数据集,本地光场融合数据集和DTU数据集。我们表明,即使在多视图数据集上进行预训练,Sinnerf也可以产生照片现实的新型视图合成结果。在单个图像设置下,Sinnerf在所有情况下都显着胜过当前最新的NERF基线。项目页面:https://vita-group.github.io/sinnerf/
translated by 谷歌翻译
我们提出了一个基于变压器的NERF(Transnerf),以学习在新视图合成任务的观察视图图像上进行的通用神经辐射场。相比之下,现有的基于MLP的NERF无法直接接收具有任意号码的观察视图,并且需要基于辅助池的操作来融合源视图信息,从而导致源视图与目标渲染视图之间缺少复杂的关系。此外,当前方法分别处理每个3D点,忽略辐射场场景表示的局部一致性。这些局限性可能会在挑战现实世界应用中降低其性能,在这些应用程序中可能存在巨大的差异和新颖的渲染视图之间的巨大差异。为了应对这些挑战,我们的Transnerf利用注意机制自然地将任意数量的源视图的深层关联解码为基于坐标的场景表示。在统一变压器网络中,在射线铸造空间和周围视图空间中考虑了形状和外观的局部一致性。实验表明,与基于图像的最先进的基于图像的神经渲染方法相比,我们在各种场景上接受过培训的Transnf可以在场景 - 敏捷和每个场景的燃烧场景中获得更好的性能。源视图与渲染视图之间的差距很大。
translated by 谷歌翻译
在不同观点之间找到准确的对应关系是无监督的多视图立体声(MVS)的跟腱。现有方法是基于以下假设:相应的像素具有相似的光度特征。但是,在实际场景中,多视图图像观察到非斜面的表面和经验遮挡。在这项工作中,我们提出了一种新颖的方法,即神经渲染(RC-MVSNET),以解决观点之间对应关系的歧义问题。具体而言,我们施加了一个深度渲染一致性损失,以限制靠近对象表面的几何特征以减轻遮挡。同时,我们引入了参考视图综合损失,以产生一致的监督,即使是针对非兰伯特表面。关于DTU和TANKS \&Temples基准测试的广泛实验表明,我们的RC-MVSNET方法在无监督的MVS框架上实现了最先进的性能,并对许多有监督的方法进行了竞争性能。该代码在https://github.com/上发布。 BOESE0601/RC-MVSNET
translated by 谷歌翻译
我们呈现高动态范围神经辐射字段(HDR-NERF),以从一组低动态范围(LDR)视图的HDR辐射率字段与不同的曝光。使用HDR-NERF,我们能够在不同的曝光下生成新的HDR视图和新型LDR视图。我们方法的关键是模拟物理成像过程,该过程决定了场景点的辐射与具有两个隐式功能的LDR图像中的像素值转换为:RADIACE字段和音调映射器。辐射场对场景辐射(值在0到+末端之间的值变化),其通过提供相应的射线源和光线方向来输出光线的密度和辐射。 TONE MAPPER模拟映射过程,即在相机传感器上击中的光线变为像素值。通过将辐射和相应的曝光时间送入音调映射器来预测光线的颜色。我们使用经典的卷渲染技术将输出辐射,颜色和密度投影为HDR和LDR图像,同时只使用输入的LDR图像作为监控。我们收集了一个新的前瞻性的HDR数据集,以评估所提出的方法。综合性和现实世界场景的实验结果验证了我们的方法不仅可以准确控制合成视图的曝光,还可以用高动态范围呈现视图。
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译